In mathematics, the subderivative (or subgradient) generalizes the derivative to convex functions which are not necessarily differentiable. The set of subderivatives at a point is called the subdifferential at that point.[Bubeck, S. (2014). Theory of Convex Optimization for Machine Learning. ArXiv, abs/1405.4980.] Subderivatives arise in convex analysis, the study of convex functions, often in connection to convex optimization.
Let be a real number-valued convex function defined on an open interval of the real line. Such a function need not be differentiable at all points: For example, the absolute value function is non-differentiable when . However, as seen in the graph on the right (where in blue has non-differentiable kinks similar to the absolute value function), for any in the domain of the function one can draw a line which goes through the point and which is everywhere either touching or below the graph of f. The slope of such a line is called a subderivative.
Definition
Rigorously, a
subderivative of a convex function
at a point
in the open interval
is a real number
such that
for all
. By the converse of the mean value theorem, the set of subderivatives at
for a convex function is a
empty set closed interval , where
and
are the
The interval
of all subderivatives is called the
subdifferential of the function
at
, denoted by
. If
is convex, then its subdifferential at any point is non-empty. Moreover, if its subdifferential at
contains exactly one subderivative, then
is differentiable at
and
.
Example
Consider the function
which is convex. Then, the subdifferential at the origin is the interval
. The subdifferential at any point
is the
singleton set , while the subdifferential at any point
is the singleton set
. This is similar to the
sign function, but is not single-valued at
, instead including all possible subderivatives.
Properties
-
A convex function is differentiable at if and only if the subdifferential is a singleton set, which is .
-
A point is a global minimum of a convex function if and only if zero is contained in the subdifferential. For instance, in the figure above, one may draw a horizontal "subtangent line" to the graph of at . This last property is a generalization of the fact that the derivative of a function differentiable at a local minimum is zero.
-
If and are convex functions with subdifferentials and with being the interior point of one of the functions, then the subdifferential of is (where the addition operator denotes the Minkowski sum). This reads as "the subdifferential of a sum is the sum of the subdifferentials."
The subgradient
The concepts of subderivative and subdifferential can be generalized to functions of several variables. If
is a real-valued convex function defined on a
convex set open set in the
Euclidean space , a vector
in that space is called a
subgradient at
if for any
one has that
where the dot denotes the
dot product.
The set of all subgradients at
is called the
subdifferential at
and is denoted
. The subdifferential is always a nonempty convex
compact set.
These concepts generalize further to convex functions on a convex set in a locally convex space . A functional in the dual space is called a subgradient at in if for all ,
The set of all subgradients at
is called the subdifferential at
and is again denoted
. The subdifferential is always a convex
closed set. It can be an empty set; consider for example an unbounded operator, which is convex, but has no subgradient. If
is continuous, the subdifferential is nonempty.
History
The subdifferential on convex functions was introduced by Jean Jacques Moreau and R. Tyrrell Rockafellar in the early 1960s. The
generalized subdifferential for nonconvex functions was introduced by Francis H. Clarke and R. Tyrrell Rockafellar in the early 1980s.
[
]
See also
External links