Stellar mass is a phrase that is used by astronomers to describe the mass of a star. It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass (). Hence, the bright star Sirius has around . A star's mass will vary over its lifetime as mass is lost with the stellar wind or ejected via pulsational behavior, or if additional mass is accreted, such as from a Binary star.
Very-low-mass stars with masses below 0.5 do not enter the asymptotic giant branch (AGB) but evolve directly into white dwarfs. (At least in theory; the lifetimes of such stars are long enough—longer than the age of the universe to date—that none has yet had time to evolve to this point and be observed.)
Low-mass stars with a mass below about 1.8–2.2 (depending on composition) do enter the AGB, where they develop a degenerate helium core.
Intermediate-mass stars undergo helium fusion and develop a degenerate carbon–oxygen core.
Massive stars have a minimum mass of 5–10 . These stars undergo carbon fusion, with their lives ending in a core-collapse supernova explosion. created as a result of a stellar collapse are termed stellar-mass black holes.
The combination of the radius and the mass of a star determines the surface gravity. Giant stars have a much lower surface gravity than main sequence stars, while the opposite is the case for degenerate, compact stars such as white dwarfs. The surface gravity can influence the appearance of a star's spectrum, with higher gravity causing a broadening of the .
The first stars to form after the Big Bang may have been larger, up to 300 or more, due to the complete absence of elements heavier than lithium in their composition. This generation of supermassive, population III stars is long extinct, however, and currently only theoretical.
With a mass only 93 times that of Jupiter (), or .09 , AB Doradus, a companion to AB Doradus A, is the smallest known star undergoing nuclear fusion in its core. For stars with similar metallicity to the Sun, the theoretical minimum mass the star can have, and still undergo fusion at the core, is estimated to be about 75 . When the metallicity is very low, however, a recent study of the faintest stars found that the minimum star size seems to be about 8.3% of the solar mass, or about 87 . Smaller bodies are called , which occupy a poorly defined grey area between stars and .
Range
Change
|
|