Speciation is the process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.
There are four geographic modes of speciation in nature, based on the extent to which speciating are isolated from one another: allopatric, peripatric, parapatric, and sympatric. Whether genetic drift is a minor or major contributor to speciation is the subject of much ongoing discussion.
Rapid sympatric speciation can take place through , such as by doubling of chromosome number; the result is progeny which are immediately reproductively isolated from the parent population. New species can also be created through hybridization, followed by reproductive isolation, if the hybrid is favoured by natural selection.
Since Charles Darwin's time, efforts to understand the nature of species have primarily focused on the first aspect, and it is now widely agreed that the critical factor behind the origin of new species is reproductive isolation.
This dilemma can be described as the absence or rarity of transitional varieties in habitat space.
Another dilemma, related to the first one, is the absence or rarity of transitional varieties in time. Darwin pointed out that by the theory of natural selection "innumerable transitional forms must have existed", and wondered "why do we not find them embedded in countless numbers in the crust of the earth". That clearly defined species actually do exist in nature in both space and time implies that some fundamental feature of natural selection operates to generate and maintain species.
Rarity brings with it other costs. Rare and unusual features are very seldom advantageous. In most instances, they indicate a (Silent mutation) mutation, which is almost certain to be deleterious. It therefore behooves sexual creatures to avoid mates sporting rare or unusual features (koinophilia). Sexual populations therefore rapidly shed rare or peripheral phenotypic features, thus canalizing the entire external appearance, as illustrated in the accompanying image of the African pygmy kingfisher, Ispidina picta. This uniformity of all the adult members of a sexual species has stimulated the proliferation of on birds, mammals, reptiles, insects, and many other taxon, in which a species can be described with a single illustration (or two, in the case of sexual dimorphism). Once a population has become as homogeneous in appearance as is typical of most species (and is illustrated in the photograph of the African pygmy kingfisher), its members will avoid mating with members of other populations that look different from themselves. Thus, the avoidance of mates displaying rare and unusual phenotypic features inevitably leads to reproductive isolation, one of the hallmarks of speciation.
In the contrasting case of organisms that reproduce asexually, there is no cost of rarity; consequently, there are only benefits to fine-scale adaptation. Thus, asexual organisms very frequently show the continuous variation in form (often in many different directions) that Darwin expected evolution to produce, making their classification into "species" (more correctly, morphospecies) very difficult.
One example of natural speciation is the diversity of the three-spined stickleback, a marine fish that, after the last glacial period, has undergone speciation into new Fresh water colonies in isolated lakes and streams. Over an estimated 10,000 generations, the sticklebacks show structural differences that are greater than those seen between different Genus of fish including variations in fins, changes in the number or size of their bony plates, variable jaw structure, and color differences.
Case studies include Ernst Mayr's investigation of bird fauna; the Australian bird Petroica multicolor; and reproductive isolation in populations of Drosophila subject to population bottlenecking.
Parapatric speciation may be associated with differential landscape-dependent selection. Even if there is a gene flow between two populations, strong differential selection may impede assimilation and different species may eventually develop. Habitat differences may be more important in the development of reproductive isolation than the isolation time. Caucasian rock lizards Darevskia rudis, D. valentini and D. portschinskii all hybridize with each other in their hybrid zone; however, hybridization is stronger between D. portschinskii and D. rudis, which separated earlier but live in similar habitats than between D. valentini and two other species, which separated later but live in climatically different habitats.
Ecologists refer to parapatric and peripatric speciation in terms of . A niche must be available in order for a new species to be successful. Ring species such as gull gulls have been claimed to illustrate speciation in progress, though the situation may be more complex. The grass Anthoxanthum odoratum may be starting parapatric speciation in areas of mine contamination.
Often-cited examples of sympatric speciation are found in insects that become dependent on different host plants in the same area.
The best known example of sympatric speciation is that of the of East Africa inhabiting the Rift Valley lakes, particularly Lake Victoria, Lake Malawi and Lake Tanganyika. There are over 800 described species, and according to estimates, there could be well over 1,600 species in the region. Their evolution is cited as an example of both natural and sexual selection. A 2008 study suggests that sympatric speciation has occurred in Tennessee cave salamanders. Sympatric speciation driven by ecological factors may also account for the extraordinary diversity of crustaceans living in the depths of Siberia's Lake Baikal.
Budding speciation has been proposed as a particular form of sympatric speciation, whereby small groups of individuals become progressively more isolated from the ancestral stock by breeding preferentially with one another. This type of speciation would be driven by the conjunction of various advantages of inbreeding such as the expression of advantageous recessive phenotypes, reducing the recombination load, and reducing the cost of sex.
The hawthorn fly ( Rhagoletis pomonella), also known as the apple maggot fly, appears to be undergoing sympatric speciation. Different populations of hawthorn fly feed on different fruits. A distinct population emerged in North America in the 19th century some time after , a non-native species, were introduced. This apple-feeding population normally feeds only on apples and not on the historically preferred fruit of Crataegus. The current hawthorn feeding population does not normally feed on apples. Some evidence, such as that six out of thirteen Alloenzyme loci are different, that hawthorn flies mature later in the season and take longer to mature than apple flies; and that there is little evidence of interbreeding (researchers have documented a 4–6% hybridization rate) suggests that sympatric speciation is occurring.
One reasoning behind this is that if the parents of the hybrid offspring each have naturally selected traits for their own certain environments, the hybrid offspring will bear traits from both, therefore would not fit either ecological niche as well as either parent (ecological speciation). The low fitness of the hybrids would cause selection to favor assortative mating, which would control hybridization. This is sometimes called the Wallace effect after the evolutionary biologist Alfred Russel Wallace who suggested in the late 19th century that it might be an important factor in speciation. Conversely, if the hybrid offspring are more fit than their ancestors, then the populations will merge back into the same species within the area they are in contact.
Another important theoretical mechanism is the arise of intrinsic genetic incompatibilities, addressed in the Bateson-Dobzhansky-Muller model. Genes from allopatric populations will have different evolutionary backgrounds and are never tested together until hybridization at secondary contact, when negative epistatic interactions will be exposed. In other words, new alleles will emerge in a population and only pass through selection if they work well together with other genes in the same population, but it may not be compatible with genes in an allopatric population, be those other newly derived alleles or retained ancestral alleles. This is only revealed through new hybridization. Such incompatibilities cause lower fitness in hybrids regardless of the ecological environment, and are thus intrinsic, although they can originate from the adaptation to different environments. The accumulation of such incompatibilities increases faster and faster with time, creating a "snowball" effect. There is a large amount of evidence supporting this theory, primarily from laboratory populations such as Drosophila and Mus, and some genes involved in incompatibilities have been identified.
Reinforcement favoring reproductive isolation is required for both parapatric and sympatric speciation. Without reinforcement, the geographic area of contact between different forms of the same species, called their "hybrid zone", will not develop into a boundary between the different species. Hybrid zones are regions where diverged populations meet and interbreed. Hybrid offspring are common in these regions, which are usually created by diverged species coming into secondary contact. Without reinforcement, the two species would have uncontrollable inbreeding. Reinforcement may be induced in artificial selection experiments as described below.
The best-documented creations of new species in the laboratory were performed in the late 1980s. William R. Rice and George W. Salt bred Drosophila melanogaster Drosophilidae using a maze with three different choices of habitat such as light/dark and wet/dry. Each generation was placed into the maze, and the groups of flies that came out of two of the eight exits were set apart to breed with each other in their respective groups. After thirty-five generations, the two groups and their offspring were isolated reproductively because of their strong habitat preferences: they mated only within the areas they preferred, and so did not mate with flies that preferred the other areas. The history of such attempts is described by Rice and Elen E. Hostert (1993). Diane Dodd used a laboratory experiment to show how reproductive isolation can develop in Drosophila pseudoobscura fruit flies after several generations by placing them in different media, starch- and maltose-based media.
Dodd's experiment has been replicated many times, including with other kinds of fruit flies and foods. Such rapid evolution of reproductive isolation may sometimes be a relic of infection by Wolbachia bacteria.
An alternative explanation is that these observations are consistent with sexually-reproducing animals being inherently reluctant to mate with individuals whose appearance or behavior is different from the norm. The risk that such deviations are due to mutation is high. Thus, if an animal, unable to predict natural selection's future direction, is conditioned to produce the fittest offspring possible, it will avoid mates with unusual habits or features. Sexual creatures then inevitably group themselves into reproductively isolated species.
These findings motivated the Dobzhansky–Muller model: hybrid dysfunction arises from negative epistasis between derived alleles that evolved separately in each lineage, without either lineage having to cross a low-fitness state. Subsequent theory formalized how selected loci impede introgression at nearby neutral loci, quantifying the "barrier to gene flow" and showing that many loci are typically required to strongly reduce exchange across most of the genome. In parallel, the "genic view" of speciation argued that differentiation and isolation often begin at a subset of loci under divergent or sexual selection, while the remainder of the genome can remain permeable for long periods.
Because barrier loci impede nearby introgression, genomes of diverging lineages often become mosaics with semipermeable regions during "semi-isolated" stages; linkage disequilibria and parallel clines in hybrid zones provide estimates of selection and dispersal maintaining such barriers. Population-genomic inference now makes it possible to quantify how gene flow declines with molecular divergence and to identify when genomic heterogeneity of introgression arises, thereby enabling cross-taxon comparisons along the speciation continuum to uncover the factors driving the accumulation of species barriers.
Few speciation genes have been found. They usually involve the reinforcement process of late stages of speciation. In 2008, a speciation gene causing reproductive isolation was reported. It causes hybrid sterility between related subspecies. The order of speciation of three groups from a common ancestor may be unclear or unknown; a collection of three such species is referred to as a "trichotomy".
It has been suggested that many of the existing plant and most animal species have undergone an event of polyploidization in their evolutionary history. Reproduction of successful polyploid species is sometimes asexual, by parthenogenesis or apomixis, as for unknown reasons many asexual organisms are polyploid. Rare instances of polyploid mammals are known, but most often result in prenatal death.
Hybridization is an important means of speciation in plants, since (having more than two copies of each chromosome) is tolerated in plants more readily than in animals. Polyploidy is important in hybrids as it allows reproduction, with the two different sets of chromosomes each being able to pair with an identical partner during meiosis. Polyploids also have more genetic diversity, which allows them to avoid inbreeding depression in small populations.
Hybridization without change in chromosome number is called homoploid hybrid speciation. It is considered very rare but has been shown in Heliconius butterfly and . Polyploid speciation, which involves changes in chromosome number, is a more common phenomenon in plant species.
Evolution is imposed on species or groups. It is not planned or striven for in some Lamarckism way. The mutations on which the process depends are random events, and, except for the "" which do not affect the functionality or appearance of the carrier, are thus usually disadvantageous, and their chance of proving to be useful in the future is vanishingly small. Therefore, while a species or group might benefit from being able to adapt to a new environment by accumulating a wide range of genetic variation, this is to the detriment of the individuals who have to carry these mutations until a small, unpredictable minority of them ultimately contributes to such an adaptation. Thus, the capability to evolve would require group selection, a concept discredited by (for example) George C. Williams, John Maynard Smith and Richard Dawkins "Remarks on an earlier article by Elliott Sober sic and David Sloan Wilson, who made a more extended argument in their recent book Unto Others : The Evolution and Psychology of Unselfish Behavior" "Commentary on Wilson & Sober: Group Selection." as selectively disadvantageous to the individual.
The resolution to Darwin's second dilemma might thus come about as follows:
If sexual individuals are disadvantaged by passing mutations on to their offspring, they will avoid mutant mates with strange or unusual characteristics. Mutations that affect the external appearance of their carriers will then rarely be passed on to the next and subsequent generations. They would therefore seldom be tested by natural selection. Evolution is, therefore, effectively halted or slowed down considerably. The only mutations that can accumulate in a population, on this punctuated equilibrium view, are ones that have no noticeable effect on the outward appearance and functionality of their bearers (i.e., they are "silent" or "neutral mutations", which can be, and are, used to trace the relatedness and age of populations and species.)
This argument implies that evolution can only occur if mutant mates cannot be avoided, as a result of a severe scarcity of potential mates. This is most likely to occur in small, isolated communities. These occur most commonly on small islands, in remote valleys, lakes, river systems, or caves, or during the aftermath of a Extinction event. Under these circumstances, not only is the choice of mates severely restricted but population bottlenecks, founder effects, genetic drift and inbreeding cause rapid, random changes in the isolated population's genetic composition. Furthermore, hybridization with a related species trapped in the same isolate might introduce additional genetic changes. If an isolated population such as this survives its genetic upheavals, and subsequently expands into an unoccupied niche, or into a niche in which it has an advantage over its competitors, a new species, or subspecies, will have come into being. In geological terms, this will be an abrupt event. A resumption of avoiding mutant mates will thereafter result, once again, in evolutionary stagnation.
In apparent confirmation of this punctuated equilibrium view of evolution, the fossil record of an evolutionary progression typically consists of species that suddenly appear, and ultimately disappear, hundreds of thousands or millions of years later, without any change in external appearance. Graphically, these fossil species are represented by lines parallel with the time axis, whose lengths depict how long each of them existed. The fact that the lines remain parallel with the time axis illustrates the unchanging appearance of each of the fossil species depicted on the graph. During each species' existence new species appear at random intervals, each also lasting many hundreds of thousands of years before disappearing without a change in appearance. The exact relatedness of these concurrent species is generally impossible to determine. This is illustrated in the diagram depicting the distribution of hominin species through time since the Hominini separated from the line that led to the evolution of their closest living primate relatives, the chimpanzees.
For similar evolutionary time lines see, for instance, the paleontological list of African dinosaurs, Asian dinosaurs, the Lampriformes and Amiiformes.
|
|