The slow neutron-capture process, or s-process, is a series of reactions in nuclear astrophysics that occur in stars, particularly asymptotic giant branch stars. The s-process is responsible for the creation (nucleosynthesis) of approximately half the Atomic nucleus heavier than iron.
In the s-process, a seed nucleus undergoes neutron capture to form an isotope with one higher atomic mass. If the new isotope is stable nuclide, a series of increases in mass can occur, but if it is unstable nucleus, then beta decay will occur, producing an element of the next higher atomic number. The process is slow (hence the name) in the sense that there is sufficient time for this radioactive decay to occur before another neutron is captured. A series of these reactions produces stable isotopes by moving along the valley of beta-decay stable isobars in the table of nuclides.
A range of elements and isotopes can be produced by the s-process, because of the intervention of alpha decay steps along the reaction chain. The relative abundances of elements and isotopes produced depends on the source of the neutrons and how their flux changes over time. Each branch of the s-process reaction chain eventually terminates at a cycle involving lead, bismuth, and polonium.
The s-process contrasts with the r-process, in which successive neutron captures are rapid: they happen more quickly than the beta decay can occur. The r-process dominates in environments with higher fluxes of ; it produces heavier elements and more neutron-rich isotopes than the s-process. Together the two processes account for most of the relative abundance of chemical elements heavier than iron.
A calculable model for creating the heavy isotopes from iron seed nuclei in a time-dependent manner was not provided until 1961. That work showed that the large overabundances of barium observed by astronomers in certain red-giant stars could be created from iron seed nuclei if the total neutron flux (number of neutrons per unit area) was appropriate. It also showed that no one single value for neutron flux could account for the observed s-process abundances, but that a wide range is required. The numbers of iron seed nuclei that were exposed to a given flux must decrease as the flux becomes stronger. This work also showed that the curve of the product of neutron-capture cross section times abundance is not a smoothly falling curve, as B2FH had sketched, but rather has a ledge-precipice structure. A series of papers in the 1970s by Donald D. Clayton utilizing an exponentially declining neutron flux as a function of the number of iron nuclei exposed became the standard model of the s-process and remained so until the details of AGB-star nucleosynthesis became sufficiently advanced that they became a standard model for s-process element formation based on stellar structure models. Important series of measurements of neutron-capture cross sections were reported from Oak Ridge National Lab in 1965 and by Karlsruhe Institute of Technology's Nuclear Physics Center in 1982 and subsequently, these placed the s-process on the firm quantitative basis that it enjoys today.
The main neutron source reactions are:
One distinguishes the main and the weak s-process component. The main component produces heavy elements beyond Strontium and Yttrium, and up to Lead in the lowest metallicity stars. The production sites of the main component are low-mass asymptotic giant branch stars. The main component relies on the 13C neutron source above. The weak component of the s-process, on the other hand, synthesizes s-process isotopes of elements from iron group seed nuclei to 58Fe on up to Sr and Y, and takes place at the end of helium fusion- and carbon-burning in massive stars. It employs primarily the 22Ne neutron source. These stars will become supernovae at their demise and spew those s-process isotopes into interstellar gas.
The s-process is sometimes approximated over a small mass region using the so-called "local approximation", by which the ratio of abundances is inversely proportional to the ratio of neutron-capture cross-sections for nearby isotopes on the s-process path. This approximation is – as the name indicates – only valid locally, meaning for isotopes of nearby mass numbers, but it is invalid at magic numbers where the ledge-precipice structure dominates.
In fact, this cycle does not reach equilibrium because the neutron cross section of the doubly magic 208Pb is so small that that isotope will accumulate, and very little bismuth is produced in the s-process, as the chart above indicates.
The other magic numbers can behave similarly: the stable nuclei passed through between iron and lead with a magic number of neutrons are Sr-Zr (N = 50) and Ba-Nd (N = 82) and those isotopes all are unusually abundant and the most abundant of their element (the only for the odd elements, except for the extremely rare radioactive lanthanum-138).
|
|