In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object that is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.
The Ricci tensor can be characterized by measurement of how a shape is deformed as one moves along in the space. In general relativity, which involves the pseudo-Riemannian setting, this is reflected by the presence of the Ricci tensor in the Raychaudhuri equation. Partly for this reason, the Einstein field equations propose that spacetime can be described by a pseudo-Riemannian metric, with a strikingly simple relationship between the Ricci tensor and the matter content of the universe.
Like the metric tensor, the Ricci tensor assigns to each tangent space of the manifold a symmetric bilinear form.Here it is assumed that the manifold carries its unique Levi-Civita connection. For a general affine connection, the Ricci tensor need not be symmetric. Broadly, one could analogize the role of the Ricci curvature in Riemannian geometry to that of the Laplace operator in the analysis of functions; in this analogy, the Riemann curvature tensor, of which the Ricci curvature is a natural by-product, would correspond to the full matrix of second derivatives of a function. However, there are other ways to draw the same analogy.
For three-dimensional manifolds, the Ricci tensor contains all of the information that in higher dimensions is encoded by the more complicated Riemann curvature tensor. In part, this simplicity allows for the application of many geometric and analytic tools, which led to the solution of the Poincaré conjecture through the work of Richard S. Hamilton and Grigori Perelman.
In differential geometry, the determination of lower bounds on the Ricci tensor on a Riemannian manifold would allow one to extract global geometric and topological information by comparison (cf. comparison theorem) with the geometry of a constant curvature space form. This is since lower bounds on the Ricci tensor can be successfully used in studying the length functional in Riemannian geometry, as first shown in 1941 via Myers's theorem.
One common source of the Ricci tensor is that it arises whenever one commutes the covariant derivative with the tensor Laplacian. This, for instance, explains its presence in the Bochner formula, which is used ubiquitously in Riemannian geometry. For example, this formula explains why the gradient estimates due to Shing-Tung Yau (and their developments such as the Cheng–Yau and Li–Yau inequalities) nearly always depend on a lower bound for the Ricci curvature.
In 2007, John Lott, Karl-Theodor Sturm, and Cedric Villani demonstrated decisively that lower bounds on Ricci curvature can be understood entirely in terms of the metric space structure of a Riemannian manifold, together with its volume form. This established a deep link between Ricci curvature and Wasserstein geometry and optimal transport, which is presently the subject of much research.
That is, having fixed and , then for any orthonormal basis of the vector space , one has
It is a standard exercise of (multi)linearalgebra to verify that this definition does not depend on the choice of the basis .
In abstract index notation,
Sign conventions. Note that some sources define to be what would here be called ; they would then define as . Although sign conventions differ about the Riemann tensor, they do not differ about the Ricci tensor.
Now define, for each , , , , and between 1 and , the functions as maps .
Now let and be two smooth charts with . Let be the functions computed as above via the chart and let be the functions computed as above via the chart . Then one can check by a calculation with the chain rule and the product rule that where is the first derivative along th direction of . This shows that the following definition does not depend on the choice of . For any , define a bilinear map by where and are the components of the tangent vectors at in and relative to the coordinate vector fields of .
It is common to abbreviate the above formal presentation in the following style:
The final line includes the demonstration that the bilinear map Ric is well-defined, which is much easier to write out with the informal notation.
The complicated formula defining in the introductory section is the same as that in the following section. The only difference is that terms have been grouped so that it is easy to see that .
It thus follows linear-algebraically that the Ricci tensor is completely determined by knowing the quantity for all vectors of unit length. This function on the set of unit tangent vectors is often also called the Ricci curvature, since knowing it is equivalent to knowing the Ricci curvature tensor.
The Ricci curvature is determined by the sectional curvatures of a Riemannian manifold, but generally contains less information. Indeed, if is a vector of unit length on a Riemannian -manifold, then is precisely times the average value of the sectional curvature, taken over all the 2-planes containing . There is an -dimensional family of such 2-planes, and so only in dimensions 2 and 3 does the Ricci tensor determine the full curvature tensor. A notable exception is when the manifold is given a priori as a hypersurface of Euclidean space. The second fundamental form, which determines the full curvature via the Gauss–Codazzi equation, is itself determined by the Ricci tensor and the principal directions of the hypersurface are also the eigendirections of the Ricci tensor. The tensor was introduced by Ricci for this reason.
As can be seen from the second Bianchi identity, one has where is the scalar curvature, defined in local coordinates as . This is often called the contracted second Bianchi identity.
In fact, by taking the Taylor expansion of the metric applied to a Jacobi field along a radial geodesic in the normal coordinate system, one has
In these coordinates, the metric volume element then has the following expansion at : which follows by expanding the square root of the determinant of the metric.
Thus, if the Ricci curvature is positive in the direction of a vector , the conical region in swept out by a tightly focused family of geodesic segments of length emanating from , with initial velocity inside a small cone about , will have smaller volume than the corresponding conical region in Euclidean space, at least provided that is sufficiently small. Similarly, if the Ricci curvature is negative in the direction of a given vector , such a conical region in the manifold will instead have larger volume than it would in Euclidean space.
The Ricci curvature is essentially an average of curvatures in the planes including . Thus if a cone emitted with an initially circular (or spherical) cross-section becomes distorted into an ellipse (ellipsoid), it is possible for the volume distortion to vanish if the distortions along the principal axes counteract one another. The Ricci curvature would then vanish along . In physical applications, the presence of a nonvanishing sectional curvature does not necessarily indicate the presence of any mass locally; if an initially circular cross-section of a cone of later becomes elliptical, without changing its volume, then this is due to tidal effects from a mass at some other location.
Ricci curvature also appears in the Ricci flow equation, first introduced by Richard S. Hamilton in 1982, where certain one-parameter families of Riemannian metrics are singled out as solutions of a geometrically defined partial differential equation. In harmonic local coordinates the Ricci tensor can be expressed as where are the components of the metric tensor and is the Laplace–Beltrami operator. This fact motivates the introduction of the Ricci flow equation as a natural extension of the heat equation for the metric. Since heat tends to spread through a solid until the body reaches an equilibrium state of constant temperature, if one is given a manifold, the Ricci flow may be hoped to produce an 'equilibrium' Riemannian metric that is Einstein metric or of constant curvature. However, such a clean "convergence" picture cannot be achieved since many manifolds cannot support such metrics. A detailed study of the nature of solutions of the Ricci flow, due principally to Hamilton and Grigori Perelman, shows that the types of "singularities" that occur along a Ricci flow, corresponding to the failure of convergence, encodes deep information about 3-dimensional topology. The culmination of this work was a proof of the geometrization conjecture first proposed by William Thurston in the 1970s, which can be thought of as a classification of compact 3-manifolds.
On a Kähler manifold, the Ricci curvature determines the first Chern class of the manifold (mod torsion). However, the Ricci curvature has no analogous topological interpretation on a generic Riemannian manifold.
where is the (positive spectrum) Hodge Laplacian, i.e., the opposite of the usual trace of the Hessian.
In particular, given a point in a Riemannian manifold, it is always possible to find metrics conformal to the given metric for which the Ricci tensor vanishes at . Note, however, that this is only pointwise assertion; it is usually impossible to make the Ricci curvature vanish identically on the entire manifold by a conformal rescaling.
For two dimensional manifolds, the above formula shows that if is a harmonic function, then the conformal scaling does not change the Ricci tensor (although it still changes its trace with respect to the metric unless .
It is less immediately obvious that the two terms on the right hand side are orthogonal to each other:
An identity that is intimately connected with this (but which could be proved directly) is that
In the Riemannian setting, the above orthogonal decomposition shows that is also equivalent to these conditions. In the pseudo-Riemmannian setting, by contrast, the condition does not necessarily imply , so the most that one can say is that these conditions imply .
In particular, the vanishing of trace-free Ricci tensor characterizes Einstein manifolds, as defined by the condition for a number In general relativity, this equation states that is a solution of Einstein's vacuum field equations with cosmological constant.
The Levi-Civita connection corresponding to the metric on gives rise to a connection on . The curvature of this connection is the 2-form defined by where is the complex manifold map on the tangent bundle determined by the structure of the Kähler manifold. The Ricci form is a closed 2-form. Its cohomology class is, up to a real constant factor, the first Chern class of the canonical bundle, and is therefore a topological invariant of (for compact ) in the sense that it depends only on the topology of and the homotopy class of the complex structure.
Conversely, the Ricci form determines the Ricci tensor by
In local holomorphic coordinates , the Ricci form is given by where is the Dolbeault operator and
If the Ricci tensor vanishes, then the canonical bundle is flat, so the G-structure can be locally reduced to a subgroup of the special linear group . However, Kähler manifolds already possess holonomy in , and so the (restricted) holonomy of a Ricci-flat Kähler manifold is contained in . Conversely, if the (restricted) holonomy of a 2-dimensional Riemannian manifold is contained in , then the manifold is a Ricci-flat Kähler manifold.
In this more general situation, the Ricci tensor is symmetric if and only if there exists locally a parallel volume form for the connection.
|
|