Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur.
A process that exhibits recursion is recursive. Video feedback displays recursive images, as does an infinity mirror.
For example, the following is a recursive definition of a person's ancestor. One's ancestor is either:
The Fibonacci sequence is another classic example of recursion:
Many mathematical axioms are based upon recursive rules. For example, the formal definition of the by the Peano axioms can be described as: "Zero is a natural number, and each natural number has a successor, which is also a natural number." By this base case and recursive rule, one can generate the set of all natural numbers.
Other recursively defined mathematical objects include , functions (e.g., recurrence relations), sets (e.g., Cantor ternary set), and .
There are various more tongue-in-cheek definitions of recursion; see recursive humor.
To understand recursion, one must recognize the distinction between a procedure and the running of a procedure. A procedure is a set of steps based on a set of rules, while the running of a procedure involves actually following the rules and performing the steps.
Recursion is related to, but not the same as, a reference within the specification of a procedure to the execution of some other procedure.
When a procedure is thus defined, this immediately creates the possibility of an endless loop; recursion can only be properly used in a definition if the step in question is skipped in certain cases so that the procedure can complete.
Even if it is properly defined, a recursive procedure is not easy for humans to perform, as it requires distinguishing the new from the old, partially executed invocation of the procedure; this requires some administration as to how far various simultaneous instances of the procedures have progressed. For this reason, recursive definitions are very rare in everyday situations.
This can be understood in terms of a recursive definition of a syntactic category, such as a sentence. A sentence can have a structure in which what follows the verb is another sentence: Dorothy thinks witches are dangerous, in which the sentence witches are dangerous occurs in the larger one. So a sentence can be defined recursively (very roughly) as something with a structure that includes a noun phrase, a verb, and optionally another sentence. This is really just a special case of the mathematical definition of recursion.
This provides a way of understanding the creativity of language—the unbounded number of grammatical sentences—because it immediately predicts that sentences can be of arbitrary length: Dorothy thinks that Toto suspects that Tin Man said that.... There are many structures apart from sentences that can be defined recursively, and therefore many ways in which a sentence can embed instances of one category inside another. Over the years, languages in general have proved amenable to this kind of analysis.
The generally accepted idea that recursion is an essential property of human language has been challenged by Daniel Everett on the basis of his claims about the Pirahã language. Andrew Nevins, David Pesetsky and Cilene Rodrigues are among many who have argued against this. Literary self-reference can in any case be argued to be different in kind from mathematical or logical recursion.
Recursion plays a crucial role not only in syntax, but also in natural language semantics. The word and, for example, can be construed as a function that can apply to sentence meanings to create new sentences, and likewise for noun phrase meanings, verb phrase meanings, and others. It can also apply to intransitive verbs, transitive verbs, or ditransitive verbs. In order to provide a single denotation for it that is suitably flexible, and is typically defined so that it can take any of these different types of meanings as arguments. This can be done by defining it for a simple case in which it combines sentences, and then defining the other cases recursively in terms of the simple one.Barbara Partee and Mats Rooth. 1983. In Rainer Bäuerle et al., Meaning, Use, and Interpretation of Language. Reprinted in Paul Portner and Barbara Partee, eds. 2002. Formal Semantics: The Essential Readings. Blackwell.
A recursive grammar is a formal grammar that contains recursive production rules..
A variation is found on page 269 in the index of some editions of Brian Kernighan and Dennis Ritchie's book The C Programming Language; the index entry recursively references itself ("recursion 86, 139, 141, 182, 202, 269"). Early versions of this joke can be found in Let's talk Lisp by Laurent Siklóssy (published by Prentice Hall PTR on December 1, 1975, with a copyright date of 1976) and in Software Tools by Kernighan and Plauger (published by Addison-Wesley Professional on January 11, 1976). The joke also appears in The UNIX Programming Environment by Kernighan and Pike. It did not appear in the first edition of The C Programming Language. The joke is part of the functional programming folklore and was already widespread in the functional programming community before the publication of the aforementioned books.
Another joke is that "To understand recursion, you must understand recursion." In the English-language version of the Google web search engine, when a search for "recursion" is made, the site suggests "Did you mean: recursion." An alternative form is the following, from Andrew Plotkin: "If you already know what recursion is, just remember the answer. Otherwise, find someone who is standing closer to Douglas Hofstadter than you are; then ask him or her what recursion is."
Recursive acronyms are other examples of recursive humor. PHP, for example, stands for "PHP Hypertext Preprocessor", WINE stands for "WINE Is Not an Emulator", GNU stands for "GNU's not Unix", and SPARQL denotes the "SPARQL Protocol and RDF Query Language".
In mathematical logic, the Peano axioms (or Peano postulates or Dedekind–Peano axioms), are axioms for the natural numbers presented in the 19th century by the German mathematician Richard Dedekind and by the Italian mathematician Giuseppe Peano. The Peano Axioms define the natural numbers referring to a recursive successor function and addition and multiplication as recursive functions.
Dedekind was the first to pose the problem of unique definition of set-theoretical functions on by recursion, and gave a sketch of an argument in the 1888 essay "Was sind und was sollen die Zahlen?" A. Kanamori, " In Praise of Replacement", pp.50--52. Bulletin of Symbolic Logic, vol. 18, no. 1 (2012). Accessed 21 August 2023.
where is an element of .
It can be proved by mathematical induction that for all natural numbers
By induction, for all .
A classic example of recursion is the definition of the factorial function, given here in Python code:
The function calls itself recursively on a smaller version of the input and multiplies the result of the recursive call by , until reaching the base case, analogously to the mathematical definition of factorial.
Recursion in computer programming is exemplified when a function is defined in terms of simpler, often smaller versions of itself. The solution to the problem is then devised by combining the solutions obtained from the simpler versions of the problem. One example application of recursion is in for programming languages. The great advantage of recursion is that an infinite set of possible sentences, designs or other data can be defined, parsed or produced by a finite computer program.
Recurrence relations are equations which define one or more sequences recursively. Some specific kinds of recurrence relation can be "solved" to obtain a non-recursive definition (e.g., a closed-form expression).
Use of recursion in an algorithm has both advantages and disadvantages. The main advantage is usually the simplicity of instructions. The main disadvantage is that the memory usage of recursive algorithms may grow very quickly, rendering them impractical for larger instances.
Recursion has been used in paintings since Giotto's Stefaneschi Triptych, made in 1320. Its central panel contains the kneeling figure of Cardinal Stefaneschi, holding up the triptych itself as an offering. This practice is more generally known as the Droste effect, an example of the Mise en abyme technique.
M. C. Escher's Print Gallery (1956) is a print which depicts a distorted city containing a gallery which contains the picture, and so ad infinitum.
In mathematics
Recursively defined sets
Example: the natural numbers
Example: Proof procedure
Finite subdivision rules
Functional recursion
Proofs involving recursive definitions
Recursive optimization
The recursion theorem
for any natural number .
Proof of uniqueness
In computer science
if n > 0:
return n * factorial(n - 1)
else:
return 1
In biology
In the social sciences
In business
In art
In culture
See also
Bibliography
External links
|
|