Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon Isotope, only Rn has a sufficiently long half-life (3.825 days) for it to be released from the soil and rock where it is generated. Radon isotopes are the immediate of radium isotopes. The instability of Rn, its most stable isotope, makes radon one of the rarest elements. Radon will be present on Earth for several billion more years despite its short half-life, because it is constantly being produced as a step in the decay chains of U and Th, both of which are abundant radioactive nuclides with half-lives of at least several billion years. The decay of radon produces many other short-lived , known as "radon daughters", ending at stable isotopes of lead. Rn occurs in significant quantities as a step in the normal radioactive decay chain of U, also known as the uranium series, which slowly decays into a variety of radioactive nuclides and eventually decays into stable Pb. Rn occurs in minute quantities as an intermediate step in the decay chain of Th, also known as the thorium series, which eventually decays into stable Pb.
Radon was discovered in 1899 by Ernest Rutherford and Robert B. Owens at McGill University in Montreal, and was the fifth radioactive element to be discovered. First known as "emanation", the radioactive gas was identified during experiments with radium, thorium oxide, and actinium by Friedrich Ernst Dorn, Rutherford and Owens, and André-Louis Debierne, respectively, and each element's emanation was considered to be a separate substance: radon, thoron, and actinon. Sir William Ramsay and Robert Whytlaw-Gray considered that the radioactive emanations may contain a new element of the noble gas family, and isolated "radium emanation" in 1909 to determine its properties. In 1911, the element Ramsay and Whytlaw-Gray isolated was accepted by the International Commission for Atomic Weights, and in 1923, the International Committee for Chemical Elements and the International Union of Pure and Applied Chemistry (IUPAC) chose radon as the accepted name for the element's most stable isotope, Rn; thoron and actinon were also recognized by IUPAC as distinct isotope of the element.
Under standard conditions, radon is gaseous and can be easily inhaled, posing a health hazard. However, the primary danger comes not from radon itself, but from its decay products, known as radon daughters. These decay products, often existing as single atoms or ions, can attach themselves to airborne dust particles. Although radon is a noble gas and does not adhere to lung tissue (meaning it is often exhaled before decaying), the radon daughters attached to dust are more likely to stick to the lungs. This increases the risk of harm, as the radon daughters can cause damage to lung tissue. Radon and its daughters are, taken together, often the single largest contributor to an individual's background radiation dose, but due to local differences in geology, the level of exposure to radon gas differs by location. A common source of environmental radon is uranium-containing minerals in the ground; it therefore accumulates in subterranean areas such as basements. Radon can also occur in ground water, such as spring waters and hot springs. Radon trapped in permafrost may be released by climate change-induced thawing of permafrosts, and radon may also be released into groundwater and the atmosphere following seismic events leading to , which has led to its investigation in the field of earthquake prediction. It is possible to test for radon in buildings, and to use techniques such as sub-slab depressurization for Radon mitigation.
Epidemiology studies have shown a clear association between breathing high concentrations of radon and incidence of lung cancer. Radon is a contaminant that affects indoor air quality worldwide. According to the United States Environmental Protection Agency (EPA), radon is the second most frequent cause of lung cancer, after cigarette smoking, causing 21,000 lung cancer deaths per year in the United States. About 2,900 of these deaths occur among people who have never smoked. While radon is the second most frequent cause of lung cancer, it is the number one cause among non-smokers, according to EPA policy-oriented estimates. Significant uncertainties exist for the health effects of low-dose exposures.
where is the molar fraction of radon, is the absolute temperature, and and are solvent constants.
It is Inert gas to most common chemical reactions, such as combustion, because the outer valence shell contains eight . This produces a stable, minimum energy configuration in which the outer electrons are tightly bound. Its first ionization energy—the minimum energy required to extract one electron from it—is 1037 kJ/mol. In accordance with Periodic table, radon has a lower electronegativity than the element one period before it, xenon, and is therefore more reactive. Early studies concluded that the stability of radon hydrate should be of the same order as that of the hydrates of chlorine () or sulfur dioxide (), and significantly higher than the stability of the hydrate of hydrogen sulfide ().
Because of its cost and radioactivity, experimental chemical research is seldom performed with radon, and as a result there are very few reported compounds of radon, all either or . Radon can be Oxidation by powerful oxidizing agents such as fluorine, thus forming radon difluoride (). It decomposes back to its elements at a temperature of above , and is reduced by water to radon gas and hydrogen fluoride: it may also be reduced back to its elements by hydrogen gas. It has a low volatility and was thought to be . Because of the short half-life of radon and the radioactivity of its compounds, it has not been possible to study the compound in any detail. Theoretical studies on this molecule predict that it should have a Rn–F Bond length of 2.08 ångströms (Å), and that the compound is thermodynamically more stable and less volatile than its lighter counterpart xenon difluoride (). The octahedral molecule was predicted to have an even lower enthalpy of formation than the difluoride. The RnF+ ion is believed to form by the following reaction:
For this reason, antimony pentafluoride together with chlorine trifluoride and have been considered for radon gas removal in Uranium mining due to the formation of radon–fluorine compounds. Radon compounds can be formed by the decay of radium in radium halides, a reaction that has been used to reduce the amount of radon that escapes from targets during irradiation. Additionally, salts of the RnF+ cation with the anions , , and are known. Radon is also oxidised by dioxygen difluoride to at .
Radon oxides are among the few other reported compounds of radon; only the trioxide () has been confirmed. The higher fluorides and have been claimed, are calculated to be stable, but have not been confirmed.
The decay technique has also been used. Avrorin et al. reported in 1982 that 212francium compounds cocrystallised with their caesium analogues appeared to retain chemically bound radon after electron capture; analogies with xenon suggested the formation of RnO3, but this could not be confirmed.
It is likely that the difficulty in identifying higher fluorides of radon stems from radon being kinetically hindered from being oxidised beyond the divalent state because of the strong ionicity of radon difluoride () and the high positive charge on radon in RnF+; spatial separation of molecules may be necessary to clearly identify higher fluorides of radon, of which is expected to be more stable than due to spin–orbit splitting of the 6p shell of radon (RnIV would have a closed-shell 6s6p configuration). Therefore, while should have a similar stability to xenon tetrafluoride (), would likely be much less stable than xenon hexafluoride (): radon hexafluoride would also probably be a regular octahedral molecule, unlike the distorted octahedral structure of , because of the inert pair effect. Because radon is quite electropositive for a noble gas, it is possible that radon fluorides actually take on highly fluorine-bridged structures and are not volatile. Extrapolation down the noble gas group would suggest also the possible existence of RnO, RnO2, and RnOF4, as well as the first chemically stable noble gas chlorides RnCl2 and RnCl4, but none of these have yet been found.
Radon carbonyl (RnCO) has been predicted to be stable and to have a linear molecular geometry. The molecules and RnXe were found to be significantly stabilized by spin-orbit coupling. Radon caged inside a fullerene has been proposed as a drug for tumors. Despite the existence of Xe(VIII), no Rn(VIII) compounds have been claimed to exist; should be highly unstable chemically (XeF8 is thermodynamically unstable).
Radon reacts with the liquid interhalogen ClF, , , , , and to form . In halogen fluoride solution, radon is nonvolatile and exists as the RnF+ and Rn2+ cations; addition of fluoride anions results in the formation of the complexes and , paralleling the chemistry of beryllium(II) and aluminium(III). The standard electrode potential of the Rn2+/Rn couple has been estimated as +2.0 V, although there is no evidence for the formation of stable radon ions or compounds in aqueous solution.
Three other radon isotopes have a half-life of over an hour: Rn (about 15 hours), Rn (2.4 hours) and Rn (about 1.8 hours). However, none of these three occur naturally. Rn, also called thoron, is a natural decay product of the most stable thorium isotope (Th). It has a half-life of 55.6 seconds and also emits alpha radiation. Similarly, Rn is derived from the most stable isotope of actinium (Ac)—named "actinon"—and is an alpha emitter with a half-life of 3.96 seconds.
The radon equilibrium factor is the ratio between the activity of all short-period radon progenies (which are responsible for most of radon's biological effects), and the activity that would be at equilibrium with the radon parent.
If a closed volume is constantly supplied with radon, the concentration of short-lived isotopes will increase until an equilibrium is reached where the overall decay rate of the decay products equals that of the radon itself. The equilibrium factor is 1 when both activities are equal, meaning that the decay products have stayed close to the radon parent long enough for the equilibrium to be reached, within a couple of hours. Under these conditions, each additional pCi/L of radon will increase exposure by 0.01 working level (WL, a measure of radioactivity commonly used in mining). These conditions are not always met; in many homes, the equilibrium factor is typically 40%; that is, there will be 0.004 WL of daughters for each pCi/L of radon in the air. Pb takes much longer to come in equilibrium with radon, dependent on environmental factors, but if the environment permits accumulation of dust over extended periods of time, 210Pb and its decay products may contribute to overall radiation levels as well. Several studies on the radioactive equilibrium of elements in the environment find it more useful to use the ratio of other Rn decay products with Pb, such as Po, in measuring overall radiation levels.
Because of their electrostatic charge, radon progenies adhere to surfaces or dust particles, whereas gaseous radon does not. Attachment removes them from the air, usually causing the equilibrium factor in the atmosphere to be less than 1. The equilibrium factor is also lowered by air circulation or air filtration devices, and is increased by airborne dust particles, including cigarette smoke. The equilibrium factor found in epidemiological studies is 0.4.
Several shortened names were soon suggested for the three emanations: exradio, exthorio, and exactinio in 1904; radon (Ro), thoron (To), and akton or acton (Ao) in 1918; radeon, thoreon, and actineon in 1919, and eventually radon, thoron, and actinon in 1920. (The name radon is not related to that of the Austrian mathematician Johann Radon.) The likeness of the Spectral line of these three gases with those of argon, krypton, and xenon, and their observed chemical inertia led Sir William Ramsay to suggest in 1904 that the "emanations" might contain a new element of the noble-gas family.
In 1909, Ramsay and Robert Whytlaw-Gray isolated radon and determined its Melting point and critical point. Because it does not conform to expected periodic trends, their obtained melting point (the only experimental value) was questioned in 1925 by Friedrich Paneth and E. Rabinowitsch, but ab initio Monte Carlo simulations from 2018 agree almost exactly with Ramsay and Gray's result. In 1910, they determined its density (that showed it was the heaviest known gas) and its position in the periodic table. They wrote that "italic=unset" ("the expression 'radium emanation' is very awkward") and suggested the new name niton (Nt) (from , shining) to emphasize the radioluminescence property, and in 1912 it was accepted by the International Commission for Atomic Weights. In 1923, the International Committee for Chemical Elements and International Union of Pure and Applied Chemistry (IUPAC) chose the name of the most stable isotope, radon, as the name of the element. The isotopes thoron and actinon were later renamed Rn and Rn. This has caused some confusion in the literature regarding the element's discovery as while Dorn had discovered radon the isotope, he was not the first to discover radon the element.
As late as the 1960s, the element was also referred to simply as emanation. The first synthesized compound of radon, radon fluoride, was obtained in 1962. Even today, the word radon may refer to either the element or its isotope 222Rn, with thoron remaining in use as a short name for 220Rn to stem this ambiguity. The name actinon for 219Rn is rarely encountered today, probably due to the short half-life of that isotope.
The danger of high exposure to radon in mines, where exposures can reach 1,000,000 Becquerel/m3, has long been known. In 1530, Paracelsus described a wasting disease of miners, the mala metallorum, and Georg Agricola recommended ventilation in mines to avoid this mountain sickness ( Bergsucht). In 1879, this condition was identified as lung cancer by Harting and Hesse in their investigation of miners from Schneeberg, Germany. The first major studies with radon and health occurred in the context of uranium mining in the Joachimsthal region of Bohemia. In the US, studies and mitigation only followed decades of health effects on uranium miners of the Southwestern US employed during the early Cold War; standards were not implemented until 1971.
In the early 20th century in the US, gold contaminated with the radon daughter 210Pb entered the jewelry industry. This was from gold brachytherapy seeds that had held 222Rn, which were melted down after the radon had decayed.
The presence of radon in indoor air was documented as early as 1950. Beginning in the 1970s, research was initiated to address sources of indoor radon, determinants of concentration, health effects, and mitigation approaches. In the US, the problem of indoor radon received widespread publicity and intensified investigation after a widely publicized incident in 1984. During routine monitoring at a Pennsylvania nuclear power plant, a worker was found to be contaminated with radioactivity. A high concentration of radon in his home was subsequently identified as responsible.
Radon concentration in the atmosphere is usually measured in becquerel per cubic meter (Bq/m3), the SI derived unit. Another unit of measurement common in the US is picocuries per liter (pCi/L); 1 pCi/L = 37 Bq/m3. Typical domestic exposures average about 48 Bq/m3 indoors, though this varies widely, and 15 Bq/m3 outdoors.
In the mining industry, the exposure is traditionally measured in working level (WL), and the cumulative exposure in working level month (WLM); 1 WL equals any combination of short-lived 222Rn daughters (218Po, 214Pb, 214Bi, and 214Po) in 1 liter of air that releases 1.3 × 105 MeV of potential alpha energy; 1 WL is equivalent to 2.08 × 10−5 joules per cubic meter of air (J/m3). The SI unit of cumulative exposure is expressed in joule-hours per cubic meter (J·h/m3). One WLM is equivalent to 3.6 × 10−3 J·h/m3. An exposure to 1 WL for 1 working-month (170 hours) equals 1 WLM cumulative exposure. The International Commission on Radiological Protection recommends an annual limit of 4.8WLM for miners. Assuming 2000 hours of work per year, this corresponds to a concentration of 1500 Bq/m3.
222Rn decays to 210Pb and other radioisotopes. The levels of 210Pb can be measured. The rate of deposition of this radioisotope is weather-dependent.
Radon concentrations found in natural environments are much too low to be detected by chemical means. A 1,000 Bq/m3 (relatively high) concentration corresponds to 0.17 pico- per cubic meter (pg/m3). The average concentration of radon in the atmosphere is about 6 molar percent, or about 150 atoms in each milliliter of air. The radon activity of the entire Earth's atmosphere originates from only a few tens of grams of radon, consistently replaced by decay of larger amounts of radium, thorium, and uranium.
Radon concentration can differ widely from place to place. In the open air, it ranges from 1 to 100 Bq/m, even less (0.1 Bq/m) above the ocean. In caves or ventilated mines, or poorly ventilated houses, its concentration climbs to 20–2,000 Bq/m.
Radon concentration can be much higher in mining contexts. Ventilation regulations instruct to maintain radon concentration in uranium mines under the "working level", with 95th percentile levels ranging up to nearly 3 WL (546 pCi Rn per liter of air; 20.2 kBq/m, measured from 1976 to 1985). The concentration in the air at the (unventilated) Bad Gastein Healing Gallery averages 43 kBq/m (1.2 nCi/L) with maximal value of 160 kBq/m (4.3 nCi/L).
Radon mostly appears with the radium/uranium series (decay chain) (Rn), and marginally with the thorium series (Rn). The element emanates naturally from the ground, and some building materials, all over the world, wherever traces of uranium or thorium are found, and particularly in regions with soils containing granite or shale, which have a higher concentration of uranium. Not all granitic regions are prone to high emissions of radon. Being a rare gas, it usually migrates freely through faults and fragmented soils, and may accumulate in caves or water. Owing to its very short half-life (four days for Rn), radon concentration decreases very quickly when the distance from the production area increases. Radon concentration varies greatly with season and atmospheric conditions. For instance, it has been shown to accumulate in the air if there is a meteorological inversion and little wind.
High concentrations of radon can be found in some spring waters and hot springs. The towns of Boulder, Montana; Misasa; Bad Kreuznach, Germany; and the country of Japan have radium-rich springs that emit radon. To be classified as a radon mineral water, radon concentration must be above 2 nCi/L (74 kBq/m). The activity of radon mineral water reaches 2 MBq/m in Merano and 4 MBq/m in Lurisia (Italy).
Natural radon concentrations in the Earth's atmosphere are so low that radon-rich water in contact with the atmosphere will continually lose radon by volatilization. Hence, ground water has a higher concentration of Rn than surface water, because radon is continuously produced by radioactive decay of Ra present in rocks. Likewise, the aquifer of a soil frequently has a higher radon content than the vadose zone because of losses to the atmosphere.
In 1971, Apollo 15 passed above the Aristarchus plateau on the Moon, and detected a significant rise in thought to be caused by the decay of Rn. The presence of Rn has been inferred later from data obtained from the Lunar Prospector alpha particle spectrometer.
Radon is found in some petroleum. Because radon has a similar pressure and temperature curve to propane, and oil refineries separate petrochemicals based on their boiling points, the piping carrying freshly separated propane in oil refineries can become contaminated because of decaying radon and its products.
Residues from the petroleum and natural gas industry often contain radium and its daughters. The sulfate scale from an oil well can be radium rich, while the water, oil, and gas from a well often contains radon. Radon decays to form solid radioisotopes that form coatings on the inside of pipework.
High concentrations of radon in homes were discovered by chance in 1984 after the stringent radiation testing conducted at the new Limerick Generating Station nuclear power plant in Montgomery County, Pennsylvania, United States revealed that Stanley Watras, a construction engineer at the plant, was contaminated by radioactive substances even though the reactor had never been fueled and Watras had been decontaminated each evening. It was determined that radon levels in his home's basement were in excess of 100,000 Bq/m3 (2.7 nCi/L); he was told that living in the home was the equivalent of smoking 135 packs of cigarettes a day, and he and his family had increased their risk of developing lung cancer by 13 or 14 percent.LaFavore, Michael. "Radon: The Quiet Killer." Funk & Wagnalls 1987 Science Yearbook. New York: Funk & Wagnalls, Inc., 1986. . 217–21. The incident dramatized the fact that radon levels in particular dwellings can occasionally be orders of magnitude higher than typical. Since the incident in Pennsylvania, millions of short-term radon measurements have been taken in homes in the United States. Outside the United States, radon measurements are typically performed over the long term.
In the United States, typical domestic exposures are of approximately 100 Bq/m3 (2.7 pCi/L) indoors. Some level of radon will be found in all buildings. Radon mostly enters a building directly from the soil through the lowest level in the building that is in contact with the ground. High levels of radon in the water supply can also increase indoor radon air levels. Typical entry points of radon into buildings are cracks in solid foundations and walls, construction joints, gaps in suspended floors and around service pipes, cavities inside walls, and the water supply. Radon concentrations in the same place may differ by double/half over one hour, and the concentration in one room of a building may be significantly different from the concentration in an adjoining room.
The distribution of radon concentrations will generally differ from room to room, and the readings are averaged according to regulatory protocols. Indoor radon concentration is usually assumed to follow a log-normal distribution on a given territory.Numerous references, see, for instance, Analysis And Modelling Of Indoor Radon Distributions Using Extreme Values Theory or Indoor Radon in Hungary (Lognormal Mysticism) for a discussion. Thus, the geometric mean is generally used for estimating the "average" radon concentration in an area. The mean concentration ranges from less than 10 Bq/m3 to over 100 Bq/m3 in some European countries.
Some of the highest radon hazard in the US is found in Iowa and in the Appalachian Mountain areas in southeastern Pennsylvania. Iowa has the highest average radon concentrations in the US due to significant glaciation that ground the granitic rocks from the Canadian Shield and deposited it as soils making up the rich Iowa farmland. Many cities within the state, such as Iowa City, have passed requirements for radon-resistant construction in new homes. The second highest readings in Ireland were found in office buildings in the Irish town of Mallow, County Cork, prompting local fears regarding lung cancer. Since radon is a colorless, odorless gas, the only way to know how much is present in the air or water is to perform tests. In the US, radon test kits are available to the public at retail stores, such as hardware stores, for home use, and testing is available through licensed professionals, who are often . Efforts to reduce indoor radon levels are called radon mitigation. In the US, the EPA recommends all houses be tested for radon. In the UK, under the Housing Health & Safety Rating System, property owners have an obligation to evaluate potential risks and hazards to health and safety in a residential property. Alpha-radiation monitoring over the long term is a method of testing for radon that is more common in countries outside the United States.
Radon commercialization is regulated, but it is available in small quantities for the calibration of 222Rn measurement systems. In 2008 it was priced at almost per milliliter of radium solution (which only contains about 15 picograms of actual radon at any given moment). Radon is produced commercially by a solution of radium-226 (half-life of 1,600 years). Radium-226 decays by alpha-particle emission, producing radon that collects over samples of radium-226 at a rate of about 1 mm3/day per gram of radium; equilibrium is quickly achieved and radon is produced in a steady flow, with an activity equal to that of the radium (50 Bq). Gaseous 222Rn (half-life of about four days) escapes from the capsule through diffusion. Radon sources have also been produced for scientific purposes through the implantation of radium-226 into solid stainless steel.
1 | ~0.027 | Radon concentration at the shores of large oceans is typically 1 Bq/m3. Radon trace concentration above oceans or in Antarctica can be lower than 0.1 Bq/m3, with changes in radon levels being used to track foreign pollutants. |
10 | 0.27 | Mean continental concentration in the open air: 10 to 30 Bq/m3. An EPA survey of 11,000 homes across the USA found an average of 46 Bq/m3. |
100 | 2.7 | Typical indoor domestic exposure. Most countries have adopted a radon concentration of 200–400 Bq/m3 for indoor air as an Action or Reference Level. |
1,000 | 27 | Very high radon concentrations (>1000 Bq/m3) have been found in houses built on soils with a high uranium content and/or high permeability of the ground. If levels are 20 picocuries radon per liter of air (800 Bq/m3) or higher, the home owner should consider some type of procedure to decrease indoor radon levels. Allowable concentrations in uranium mines are approximately 1,220 Bq/m3 (33 pCi/L) |
10,000 | 270 | The concentration in the air at the (unventilated) Gastein Healing Gallery averages 43 kBq/m3 (about 1.2 nCi/L) with maximal value of 160 kBq/m3 (about 4.3 nCi/L). |
100,000 | ~2700 | About 100,000 Bq/m3 (2.7 nCi/L) was measured in Stanley Watras's basement. |
1,000,000 | 27000 | Concentrations reaching 1,000,000 Bq/m3 can be found in unventilated uranium mines. |
Theoretical upper limit: Radon gas (222Rn) at 100% concentration (1 atmosphere, 0 °C); 1.538×105 curies/gram; Toxicological Profile for Radon, Table 4-2 (Keith S., Doyle J. R., Harper C., et al. Toxicological Profile for Radon. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2012 May. 4, CHEMICAL, PHYSICAL, AND RADIOLOGICAL INFORMATION.) Retrieved 2015-06-06. 5.54×1019 Bq/m3. |
Exposure to radon has been suggested to mitigate autoimmune diseases such as arthritis in a process known as radiation hormesis. As a result, in the late 20th century and early 21st century, "health mines" established in Basin, Montana, attracted people seeking relief from health problems such as arthritis through limited exposure to radioactive mine water and radon. The practice is discouraged because of the well-documented ill effects of high doses of radiation on the body.
Radioactive water baths have been applied since 1906 in Jáchymov, Czech Republic, but even before radon discovery they were used in Bad Gastein, Austria. Radium-rich springs are also used in traditional Japanese onsen in Misasa, Tottori Prefecture. Drinking therapy is applied in Bad Brambach, Germany, and during the early 20th century, water from springs with radon in them was bottled and sold (this water had little to no radon in it by the time it got to consumers due to radon's short half-life). Inhalation therapy is carried out in Gasteiner-Heilstollen, Austria; Świeradów-Zdrój, Czerniawa-Zdrój, Kowary, Lądek-Zdrój, Poland; Harghita Băi, Romania; and Boulder, Montana. In the US and Europe, there are several "radon spas", where people sit for minutes or hours in a high-radon atmosphere, such as at Bad Schmiedeberg, Germany.
After 11 half-lives (42 days), radon radioactivity is at 1/2,048 of its original level. At this stage, the predominant residual activity of the seed originates from the radon decay product 210Pb, whose half-life (22.3 years) is 2,000 times that of radon and its descendants 210Bi and 210Po.
211Rn can be used to generate 211At, which has uses in targeted alpha therapy.
Radon soil concentration has been used to map buried close-subsurface geological faults because concentrations are generally higher over the faults. Similarly, it has found some limited use in prospecting for geothermal gradients.
Some researchers have investigated changes in groundwater radon concentrations for earthquake prediction. Increases in radon were noted before the 1966 Tashkent and 1994 Mindoro earthquakes. Radon has a half-life of approximately 3.8 days, which means that it can be found only shortly after it has been produced in the radioactive decay chain. For this reason, it has been hypothesized that increases in radon concentration is due to the generation of new cracks underground, which would allow increased groundwater circulation, flushing out radon. The generation of new cracks might not unreasonably be assumed to precede major earthquakes. In the 1970s and 1980s, scientific measurements of radon emissions near faults found that earthquakes often occurred with no radon signal, and radon was often detected with no earthquake to follow. It was then dismissed by many as an unreliable indicator. As of 2009, it was under investigation as a possible earthquake precursor by NASA; further research into the subject has suggested that abnormalities in atmospheric radon concentrations can be an indicator of seismic movement.
Radon is a known pollutant emitted from Geothermal power because it is present in the material pumped from deep underground. It disperses rapidly, and no radiological hazard has been demonstrated in various investigations. In addition, typical systems re-inject the material deep underground rather than releasing it at the surface, so its environmental impact is minimal. In 1989, a survey of the collective dose received due to radon in geothermal fluids was measured at 2 man- per gigawatt-year of electricity produced, in comparison to the 2.5 man-sieverts per gigawatt-year produced from C emissions in nuclear power plants.
In the 1940s and 1950s, radon produced from a radium source was used for industrial radiography. Other X-ray sources such as Co and Ir became available after World War II and quickly replaced radium and thus radon for this purpose, being of lower cost and hazard.
Since that time, ventilation and other measures have been used to reduce radon levels in most affected mines that continue to operate. In recent years, the average annual exposure of uranium miners has fallen to levels similar to the concentrations inhaled in some homes. This has reduced the risk of occupationally induced cancer from radon, although health issues may persist for those who are currently employed in affected mines and for those who have been employed in them in the past. As the relative risk for miners has decreased, so has the ability to detect excess risks among that population. Residues from processing of uranium ore can also be a source of radon. Radon resulting from the high radium content in uncovered dumps and Uranium tailings ponds can be easily released into the atmosphere and affect people living in the vicinity. The release of radon may be mitigated by covering tailings with soil or clay, though other decay products may leach into groundwater supplies.
Non-uranium mines may pose higher risks of radon exposure, as workers are not continuously monitored for radiation, and regulations specific to uranium mines do not apply. A review of radon level measurements across non-uranium mines found the highest concentrations of radon in non-metal mines, such as phosphorus and salt mines. However, older or abandoned uranium mines without ventilation may still have extremely high radon levels.
In addition to lung cancer, researchers have theorized a possible increased risk of leukemia due to radon exposure. Empirical support from studies of the general population is inconsistent; a study of uranium miners found a correlation between radon exposure and chronic lymphocytic leukemia, and current research supports a link between indoor radon exposure and poor health outcomes (i.e., an increased risk of lung cancer or childhood leukemia). Legal actions taken by those involved in nuclear industries, including miners, millers, transporters, nuclear site workers, and their respective unions have resulted in compensation for those affected by radon and radiation exposure under programs such as the compensation scheme for radiation-linked diseases (in the United Kingdom) and the Radiation Exposure Compensation Act (in the United States).
Radon exposure (mostly radon daughters) has been linked to lung cancer in case-control studies performed in the US, Europe and China. There are approximately 21,000 deaths per year in the US (0.0063% of a population of 333 million) due to radon-induced lung cancers. In Europe, 2% of all cancers have been attributed to radon; in Slovenia in particular, a country with a high concentration of radon, about 120 people (0.0057% of a population of 2.11 million) die yearly because of radon. One of the most comprehensive radon studies performed in the US by epidemiologist R. William Field and colleagues found a 50% increased lung cancer risk even at the protracted exposures at the EPA's action level of 4 pCi/L. North American and European pooled analyses further support these findings. However, the conclusion that exposure to low levels of radon leads to elevated risk of lung cancer has been disputed, and analyses of the literature point towards elevated risk only when radon accumulates indoors and at levels above 100 Bq/m3.
Thoron (220Rn) is less studied than Rn in regards to domestic exposure due to its shorter half-life. However, it has been measured at comparatively high concentrations in buildings with earthen architecture, such as traditional half-timbered houses and modern houses with clay wall finishes, and in regions with thorium- and monazite-rich soil and sand. Thoron is a minor contributor to the overall radiation dose received due to indoor radon exposure, and can interfere with Rn measurements when not taken into account.
The actionable concentration of radon in a home varies depending on the organization doing the recommendation, for example, the EPA encourages that action be taken at concentrations as low as 74 Bq/m3 (2 pCi/L), and the European Union recommends action be taken when concentrations reach 400 Bq/m3 (11 pCi/L) for old houses and 200 Bq/m3 (5 pCi/L) for new ones. On 8 July 2010, the UK's Health Protection Agency issued new advice setting a "Target Level" of 100 Bq/m3 whilst retaining an "Action Level" of 200 Bq/m3. Similar levels (as in the UK) are published by Norwegian Radiation and Nuclear Safety Authority (DSA) with the maximum limit for schools, kindergartens, and new dwellings set at 200 Bq/m3, where 100 Bq/m3 is set as the action level.
According to the EPA, the risk of lung cancer for smokers is significant due to Synergy effects of radon and smoking. For this population about 62 people in a total of 1,000 will die of lung cancer compared to 7 people in a total of 1,000 for people who have never smoked. It cannot be excluded that the risk of non-smokers should be primarily explained by an effect of radon.
Radon, like other known or suspected external risk factors for lung cancer, is a threat for smokers and former smokers. This was demonstrated by the European pooling study. A commentary to the pooling study stated: "it is not appropriate to talk simply of a risk from radon in homes. The risk is from smoking, compounded by a synergistic effect of radon for smokers. Without smoking, the effect seems to be so small as to be insignificant."
According to the European pooling study, there is a difference in risk for the Histology subtypes of lung cancer and radon exposure. Small-cell lung carcinoma, which has a high correlation with smoking, has a higher risk after radon exposure. For other histological subtypes such as adenocarcinoma, the type that primarily affects non-smokers, the risk from radon appears to be lower.
A study of radiation from post-mastectomy radiotherapy shows that the simple models previously used to assess the combined and separate risks from radiation and smoking need to be developed. This is also supported by new discussion about the calculation method, the linear no-threshold model, which routinely has been used.
A study from 2001, which included 436 non-smokers with lung cancer and a control group of 1649 non-smokers without lung cancer, showed that exposure to radon increased the risk of lung cancer in non-smokers. The group that had been exposed to tobacco smoke in the home appeared to have a much higher risk, while those who were not exposed to passive smoking did not show any increased risk with increasing radon exposure.
Ocean surface concentrations of radon exchange within the atmosphere, causing 222Rn to increase through the air-sea interface. Although areas tested were very shallow, additional measurements in a wide variety of coastal regimes should help define the nature of 222Rn observed.
Radon levels fluctuate naturally, due to factors like transient weather conditions, so an initial test might not be an accurate assessment of a home's average radon level. Radon levels are at a maximum during the coolest part of the day when pressure differentials are greatest. Therefore, a high result (over 4 pCi/L) justifies repeating the test before undertaking more expensive abatement projects. Measurements between 4 and 10 pCi/L warrant a long-term radon test. Measurements over 10 pCi/L warrant only another short-term test so that abatement measures are not unduly delayed. The EPA has advised purchasers of real estate to delay or decline a purchase if the seller has not successfully abated radon to 4 pCi/L or less.
Because the half-life of radon is only 3.8 days, removing or isolating the source will greatly reduce the hazard within a few weeks. Another method of reducing radon levels is to modify the building's ventilation. Generally, the indoor radon concentrations increase as ventilation rates decrease. In a well-ventilated place, the radon concentration tends to align with outdoor values (typically 10 Bq/m3, ranging from 1 to 100 Bq/m3).
The four principal ways of reducing the amount of radon accumulating in a house are:
According to the EPA, the method to reduce radon "...primarily used is a vent pipe system and fan, which pulls radon from beneath the house and vents it to the outside", which is also called sub-slab depressurization, active soil depressurization, or soil suction. Generally indoor radon can be mitigated by sub-slab depressurization and exhausting such radon-laden air to the outdoors, away from windows and other building openings. "The EPA generally recommends methods which prevent the entry of radon. Soil suction, for example, prevents radon from entering your home by drawing the radon from below the home and venting it through a pipe, or pipes, to the air above the home where it is quickly diluted" and the "EPA does not recommend the use of sealing alone to reduce radon because, by itself, sealing has not been shown to lower radon levels significantly or consistently".
Positive-pressure ventilation systems can be combined with a heat exchanger to recover energy in the process of exchanging air with the outside, and simply exhausting basement air to the outside is not necessarily a viable solution as this can actually draw radon gas into a dwelling. Homes built on a crawl space may benefit from a radon collector installed under a "radon barrier" (a sheet of plastic that covers the crawl space).
|
|