Radioresistance is the level of ionizing radiation that organisms are able to withstand.
Ionizing-radiation-resistant organisms (IRRO) were defined as organisms for which the dose of acute ionizing radiation (IR) required to achieve 90% reduction (D10) is greater than 1,000 gray (Gy)
Radioresistance is surprisingly high in many organisms, in contrast to previously held views. For example, the study of environment, animals and plants around the Chernobyl disaster area has revealed an unexpected survival of many species, despite the high radiation levels. A study in a hill in the state of Minas Gerais which has high natural radiation levels from uranium deposits, has also shown many radioresistant , and plants. Certain extremophiles, such as the bacteria Deinococcus radiodurans and the , can withstand large doses of ionizing radiation on the order of 5,000 Gy.Murray RGE. 1992. The family Deino- coccaceae. In The Prokaryotes, ed. A Ballows, HG Truper, M Dworkin, W Harder, KH Schleifer 4:3732–44. New York: Springer-Verlag
Radioresistance may be induced by exposure to small doses of ionizing radiation. Several studies have documented this effect in yeast, bacteria, protozoa, algae, plants, insects, as well as in in vitro and human cells and in . Several cellular radioprotection mechanisms may be involved, such as alterations in the levels of some and nuclear and increased gene expression, DNA repair and other processes. Also biophysical models presented general basics for this phenomenon.
Many organisms have been found to possess a self-repair mechanism that can be activated by exposure to radiation in some cases. Two examples of this self-repair process in humans are described below.
Devair Alves Ferreira received a large dose (7.0 Gy) during the Goiânia accident, and lived, whereas his wife, who got a dose of 5.7 Gy, died. The most likely explanation is that his dose was fractionated into many smaller doses which were absorbed over a length of time while his wife stayed in the house more and was subjected to continuous irradiation without a break so giving the self repair mechanisms in her body less time to repair some of the damage done by the radiation. This resulted in her death. He also eventually died in 1994. In the same way some of the persons who worked in the basement of the wrecked Chernobyl have built up doses of 10 Gy, these workers received these doses in small fractions so the acute effects were avoided.
It has been found in radiation biology experiments that if a group of cells are irradiated then as the dose increases the number of cells which survive decrease. It has also been found that if a population of cells are given a dose before being set aside (without being irradiated) for a length of time before being irradiated again then the radiation has less of an ability to cause cell death. The human body contains many types of cells and a human can be killed by the loss of a single tissue in a vital organ. For many short term radiation deaths (3 days to 30 days) the loss of cells forming blood cells (bone marrow) and the cells in the digestive system (wall of the intestines) cause death.
One possible explanation for the existence of radioresistance is that it is an example of co-opted adaptation or exaptation, where radioresistance could be an indirect consequence of the evolution of a different, linked adaptation that has been positively selected for by evolution. For example, the desiccation-adaptation hypothesis proposes that the extreme temperatures present in the habitats of hyperthermophiles like Deinococcus radiodurans cause cellular damage that is virtually identical to damage typically caused by ionizing radiation, and that the cellular repair mechanisms that have evolved to repair this heat or desiccation damage are generalizable to radiation damage as well, allowing D. radiodurans to survive extreme doses of ionizing radiation. Exposure to gamma radiation leads to cellular DNA damage including alterations in nitrogenous base-pairing, sugar-phosphate backbone damage, and double-stranded DNA lesions. The extraordinarily efficient cellular repair mechanisms that Deinococcus species like D. radiodurans have evolved to repair heat-damage are likely also capable of reversing the effects of DNA damage wrought by ionizing radiation, such as by piecing back together any components of their genome that have been fragmented by the radiation.
Bacillus sp. producing unusually radiation (and peroxide) resistant spores, have been isolated from spacecraft assembly facilities, and are thought of as candidates that could ride piggyback on spacecraft through interplanetary transfer. Genome analysis of some of these radiation resistant spore producers have thrown some light on the genetic traits that could be responsible for the resistances observed.
In general, radioresistance in prokaryotes is achieved by two cellular mechanisms. The first is protection of the proteome and DNA from ionizing radiation induced damage. The second is recruitment of highly sophisticated DNA repair mechanisms that enable the reconstruction of a fully functional genome. These DNA repair mechanisms include homologous recombinational repair, and extended synthesis-dependent strand annealing.
Radioresistance in radiation oncology
Radioresistance comparison
∗ While an LD50 has been reported for wild type C. elegans individuals, an upper lethal limit has not been established, rather "nearly all animals were alive with no indication of excess lethality up to 800 Gy, the highest dose... measured."
+Lethal radiation doses (Gray) Mammals Mammals Mammals Mammals Mammals Reptile Fish Bacteria - Insects Nematode - Insects Eutardigrade Bacteria Archaea
See also
Notes and references
Further reading
|
|