Q-switching, sometimes known as giant pulse formation or Q-spoiling, is a technique by which a laser can be made to produce a pulsed output beam. The technique allows the production of light pulses with extremely high (gigawatt) peak power, much higher than would be produced by the same laser if it were operating in a continuous wave (constant output) mode. Compared to mode locking, another technique for pulse generation with lasers, Q-switching leads to much lower pulse repetition rates, much higher pulse energies, and much longer pulse durations. The two techniques are sometimes applied together.
Q-switching was first proposed in 1958 by Gordon Gould, p. 93. and independently discovered and demonstrated in 1961 or 1962 by R.W. Hellwarth and F.J. McClung at Hughes Research Laboratories using electrically switched Kerr cell shutters in a ruby laser. Optical nonlinearities such as Q-switching were fully explained by Nicolaas Bloembergen, who won the Nobel Prize in 1981 for this work.
Initially the laser medium is Laser pumping while the Q-switch is set to prevent feedback of light into the gain medium (producing an optical resonator with low Q). This produces a population inversion, but laser operation cannot yet occur since there is no feedback from the resonator. Since the rate of stimulated emission is dependent on the amount of light entering the medium, the amount of energy stored in the gain medium increases as the medium is pumped. Due to losses from spontaneous emission and other processes, after a certain time the stored energy will reach some maximum level; the medium is said to be gain saturated. At this point, the Q-switch device is quickly changed from low to high Q, allowing feedback and the process of optical amplification by stimulated emission to begin. Because of the large amount of energy already stored in the gain medium, the intensity of light in the laser resonator builds up very quickly; this also causes the energy stored in the medium to be depleted almost as quickly. The net result is a short pulse of light output from the laser, known as a giant pulse, which may have a very high peak intensity.
There are two main types of Q-switching:
Jitter can be reduced by not reducing the Q by as much, so that a small amount of light can still circulate in the cavity. This provides a "seed" of light that can aid in the buildup of the next Q-switched pulse.
With Cavity dumper, the cavity end mirrors are 100% reflective, so that no output beam is produced when the Q is high. Instead, the Q-switch is used to "dump" the beam out of the cavity after a time delay. The cavity Q goes from low to high to start the laser buildup, and then goes from high to low to "dump" the beam from the cavity all at once. This produces a shorter output pulse than regular Q-switching. Electro-optic modulators are normally used for this, since they can easily be made to function as a near-perfect beam "switch" to couple the beam out of the cavity. The modulator that dumps the beam may be the same modulator that Q-switches the cavity, or a second (possibly identical) modulator. A dumped cavity is more complicated to align than simple Q-switching, and may need a Control system to choose the best time at which to dump the beam from the cavity.
In regenerative amplification, an optical amplifier is placed inside a Q-switched cavity. Pulses of light from another laser (the "master oscillator") are injected into the cavity by lowering the Q to allow the pulse to enter and then increasing the Q to confine the pulse to the cavity where it can be amplified by repeated passes through the gain medium. The pulse is then allowed to leave the cavity via another Q switch.
Q-switched lasers are also used to remove by shattering ink pigments into particles that are cleared by the body's lymphatic system. Full removal can take between six and twenty treatments depending on the amount and colour of ink, spaced at least a month apart, using different for different coloured inks. Nd:YAG lasers are currently the most favoured lasers due to their high peak powers, high repetition rates and relatively low costs. In 2013 a picosecond laser was introduced based on clinical research which appears to show better clearance with difficult-to-remove colours such as green and light blue. Q-switched lasers can also be used to remove dark spots and fix other skin pigmentation issues.
|
|