A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution.
The gas that collapses toward the center of the dense core first builds up a low-mass protostar, and then a protoplanetary disk orbiting the object. As the collapse continues, an increasing amount of gas impacts the disk rather than the star, a consequence of angular momentum conservation. Exactly how material in the disk spirals inward onto the protostar is not yet understood, despite a great deal of theoretical effort. This problem is illustrative of the larger issue of accretion disk theory, which plays a role in much of astrophysics.
Regardless of the details, the outer surface of a protostar consists at least partially of shocked gas that has fallen from the inner edge of the disk. The surface is thus very different from the relatively quiescent photosphere of a pre-main sequence or Main sequence star. Within its deep interior, the protostar has lower temperature than an ordinary star. At its center, hydrogen-1 is not yet nuclear fusion with itself. Theory predicts, however, that the hydrogen isotope deuterium (hydrogen-2) fuses with hydrogen-1, creating helium-3. The heat from this fusion reaction tends to inflate the protostar, and thereby helps determine the size of the youngest observed pre-main-sequence stars.
The energy generated from ordinary stars comes from the nuclear fusion occurring at their centers. Protostars also generate energy, but it comes from the radiation liberated at the shocks on its surface and on the surface of its surrounding disk. The radiation thus created must traverse the interstellar dust in the surrounding dense core. The dust absorbs all impinging photons and reradiates them at longer wavelengths. Consequently, a protostar is not detectable at optical wavelengths, and cannot be placed in the Hertzsprung–Russell diagram, unlike the more evolved pre-main-sequence stars.
The actual radiation emanating from a protostar is predicted to be in the infrared and millimeter regimes. Point-like sources of such long-wavelength radiation are commonly seen in regions that are obscured by . It is commonly believed that those conventionally labeled as Class 0 or Class I sources are protostars. However, there is still no definitive evidence for this identification.
0 | submillimeter | 104 |
I | far-infrared | 105 |
II | near-infrared | 106 |
III | visible | 107 |
|
|