The term proposition has a broad use in contemporary analytic philosophy. The most basic meaning is a statement proposing an idea that can be true or false. It is used to refer to some or all of the following: the Truthbearer of truthvalue, the objects of belief and other "propositional attitudes" (i.e., what is believed, doubted, etc.), the of thatclauses, and the meanings of declarative sentences. Propositions are the sharable objects of attitudes and the primary bearers of truth and falsity. This stipulation rules out certain candidates for propositions, including thought and utterancetokens which are not sharable, and concrete events or facts, which cannot be false.
Some philosophers argue that some (or all) kinds of speech or actions besides the declarative ones also have propositional content. For example, yes–no questions present propositions, being inquiries into the truth value of them. On the other hand, some Semiotics can be declarative assertions of propositions without forming a sentence nor even being linguistic, e.g. traffic signs convey definite meaning which is either true or false.
Propositions are also spoken of as the content of and similar intentional attitudes such as desires, preferences, and hopes. For example, "I desire that I have a new car," or "I wonder whether it will snow" (or, whether it is the case that "it will snow"). Desire, belief, and so on, are thus called propositional attitudes when they take this sort of content.
Propositions show up in modern formal logic as objects of a formal language. A formal language begins with different types of symbols. These types can include variables, operators, function symbols, predicate (or relation) symbols, quantifiers, and propositional constants. (Grouping symbols are often added for convenience in using the language but do not play a logical role.) Symbols are Concatenation together according to Recursion rules in order to construct strings to which Truth value will be assigned. The rules specify how the operators, function and predicate symbols, and quantifiers are to be concatenated with other strings. A proposition is then a string with a specific form. The form that a proposition takes depends on the type of logic.
The type of logic called propositional, sentential, or statement logic includes only operators and propositional constants as symbols in its language. The propositions in this language are propositional constants, which are considered atomic propositions, and composite propositions, which are composed by recursively applying operators to propositions. Application here is simply a short way of saying that the corresponding concatenation rule has been applied.
The types of logics called Predicate logic include variables, operators, predicate and function symbols, and quantifiers as symbols in their languages. The propositions in these logics are more complex. First, terms must be defined. A term is (i) a variable or (ii) a function symbol applied to the number of terms required by the function symbol's arity. For example, if + is a binary function symbol and x, y, and z are variables, then x+(y+z) is a term, which might be written with the symbols in various orders. A proposition is (i) a predicate symbol applied to the number of terms required by its arity, (ii) an operator applied to the number of propositions required by its arity, or (iii) a quantifier applied to a proposition. For example, if = is a binary predicate symbol and ∀ is a quantifier, then ∀x,y,z (x is a proposition. This more complex structure of propositions allows these logics to make finer distinctions between inferences, i.e., to have greater expressive power.
In this context, propositions are also called sentences, statements, statement forms, formulas, and wellformed formulas, though these terms are usually not synonymous within a single text. This definition treats propositions as Syntax objects, as opposed to Semantics or Mental world objects. That is, propositions in this sense are meaningless, formal, abstract objects. They are assigned meaning and truthvalues by mappings called interpretations and valuations, respectively.
Propositions are called structured propositions if they have constituents, in some broad sense. Propositions by Matthew McGrath Singular Propositions by Greg Fitch
Assuming a structured view of propositions, we can distinguish between singular propositions (also Russellian propositions, named after Bertrand Russell) which are about a particular individual, general propositions, which are not about any particular individual, and particularized propositions, which are about a particular individual but do not contain that individual as a constituent. Structured Propositions by Jeffrey C. King
Two meaningful declarative sentences express the same proposition if and only if they mean the same thing.thus defining proposition in terms of synonymity. For example, "Snow is white" (in English) and "Schnee ist weiß" (in German) are different sentences, but they say the same thing, so they express the same proposition.
Two meaningful declarative sentencetokens express the same proposition if and only if they mean the same thing.Unfortunately, the above definitions have the result that two identical sentences/sentencetokens may appear to have the same meaning and thus express the same proposition and yet have different truthvalues, e.g. "I am Spartacus" said by Spartacus and said by John Smith; and e.g. "It is Wednesday" said on a Wednesday and on a Thursday. These examples reflect the problem of ambiguity in common language resulting in mistaken equivocation of the statements. “I am Spartacus” spoken by Spartacus is the declaration that the individual speaking is called Spartacus and it is true. When spoken by John Smith it is a declaration about a different speaker and it is false. The term “I” means different things, so “I am Spartacus” means different things.
A related problem is when identical sentences have the same truthvalue yet express different propositions. The sentence “I am a philosopher” could have been spoken by both Socrates and Plato. In both instances, the statement is true, but means something different.
These problems are addressed in predicate logic by using a variable for the problematic term, so that “X is a philosopher” can have Socrates or Plato substituted for X, illustrating that “Socrates is a philosopher” and “Plato is a philosopher” are different propositions. Similarly, “I am Spartacus” becomes “X is Spartacus” where X is replaced with terms representing the individuals Spartacus and John Smith.
The example problems are therefore averted if sentences are formulated with sufficient precision that their terms have unambiguous meanings.
A number of philosophers and linguists claim that all definitions of a proposition are too vague to be useful. For them, it is just a misleading concept that should be removed from philosophy and semantics. W.V. Quine maintained that the indeterminacy of translation prevented any meaningful discussion of propositions, and that they should be discarded in favor of sentences.

