Drinking water or potable water is water that is safe for ingestion, either when drinking directly in liquid form or consumed indirectly through food preparation. It is often (but not always) supplied through taps, in which case it is also called tap water.
The amount of drinking water required to maintain good health varies, and depends on physical activity level, age, health-related issues, and environmental conditions. This 2004 article focuses on the USA context and uses data collected from the US military. For those who work in a hot climate, up to a day may be required.
About 1 to 2 billion people lack safe drinking water. Water can carry vectors of disease and is a major cause of death and illness worldwide. Developing countries are most affected by unsafe drinking water.
For these water sources to be consumed safely, they must receive adequate water treatment and meet drinking water quality standards.Hall, Ellen L.; Dietrich, Andrea M. (2000). "A Brief History of Drinking Water." Washington: American Water Works Association. Product No. OPF-0051634, Accessed 13 June 2012.
An experimental source is solar-powered atmospheric water generators.
Springs are often used as sources for .
Tap water, delivered by domestic refers to water piped to homes and delivered to a tap or spigot.
However, relatively few studies have been focused on the drinking behavior of wild animals.
According to a report by UNICEF and UNESCO, Finland has the best drinking water quality in the world.
Microbiological parameters include coliform bacteria, Escherichia coli, and specific pathogenic species of bacteria (such as cholera-causing Vibrio cholerae), viruses, and protozoan parasites. Originally, fecal contamination was determined with the presence of coliform bacteria, a convenient marker for a class of harmful feces . The presence of fecal coliforms (like Escherichia coli) serves as an indication of contamination by sewage. Additional contaminants include protozoan oocysts such as Cryptosporidium sp., Giardia lamblia, Legionella, and viruses (enteric). Microbial pathogenic parameters are typically of greatest concern because of their immediate health risk.
Physical and chemical parameters include heavy metals, trace organic compounds, total suspended solids, and turbidity. Chemical parameters tend to pose more of a chronic health risk through buildup of heavy metals although some components like nitrates/nitrites and arsenic can have a more immediate impact. Physical parameters affect the aesthetics and taste of the drinking water and may complicate the removal of microbial pathogens.
are also potential drinking water contaminants of the category chemical contaminants. Pesticides may be present in drinking water in low concentrations, but the toxicity of the chemical and the extent of human exposure are factors that are used to determine the specific health risk.
Perfluorinated alkylated substances (PFAS) are a group of synthetic compounds used in a large variety of consumer products, such as food packaging, waterproof fabrics, carpeting and cookware. PFAS are known to persist in the environment and are commonly described as persistent organic pollutants. PFAS chemicals have been detected in blood, both humans and animals, worldwide, as well as in food products, water, air and soil. Animal testing studies with PFAS have shown effects on growth and development, and possibly effects on reproduction, thyroid, the immune system and liver. As of 2022 the health impacts of many PFAS compounds are not understood. Scientists are conducting research to determine the extent and severity of impacts from PFAS on human health. PFAS have been widely detected in drinking water worldwide and regulations have been developed, or are under development, in many countries.
One of the main causes for contaminated drinking water in developing countries is lack of sanitation and poor hygiene. For this reason, the quantification of the burden of disease from consuming contaminated drinking water usually looks at water, sanitation and hygiene aspects together. The acronym for this is WASH - standing for water, sanitation and hygiene.
Long-term consumption of water with high fluoride concentration (> 1.5 ppm F) can have serious undesirable consequences such as dental fluorosis, enamel mottle and skeletal fluorosis, bone deformities in children. Fluorosis severity depends on how much fluoride is present in the water, as well as people's diet and physical activity. Defluoridation methods include membrane-based methods, precipitation, absorption, and electrocoagulation.
Natural arsenic contamination of groundwater is a global threat with 140 million people affected in 70 countries globally.
Examples of chemical contamination include:
In emergency situations when conventional treatment systems have been compromised, waterborne pathogens may be killed or inactivated by boilingWorld Health Organization, Geneva (2004). "Guidelines for Drinking-water Quality. Volume 1: Recommendations." 3rd ed. but this requires abundant sources of fuel, and can be very onerous on consumers, especially where it is difficult to store boiled water in sterile conditions. Other techniques, such as filtration, chemical disinfection, and exposure to ultraviolet radiation (including solar UV) have been demonstrated in an array of randomized control trials to significantly reduce levels of water-borne disease among users in low-income countries, but these suffer from the same problems as boiling methods.
Another type of water treatment is called desalination and is used mainly in dry areas with access to large bodies of saltwater.
Publicly available treated water has historically been associated with major increases in life expectancy and improved public health. Water disinfection can greatly reduce the risks of waterborne diseases such as Typhoid fever and cholera. Chlorination is currently the most widely used water disinfection method, although chlorine compounds can react with substances in water and produce disinfection by-products (DBP) that pose problems to human health. Local geological conditions affecting groundwater are determining factors for the presence of various , often rendering the water "Soft Water" or "Hard water".
In the event of contamination of drinking water, government officials typically issue an advisory regarding water consumption. In the case of biological contamination, residents are usually advised to boil their water before consumption or to use bottled water as an alternative. In the case of Contamination, residents may be advised to refrain from consuming tap water entirely until the matter is resolved.
The current priority of the proponents of POU treatment is to reach large numbers of low-income households on a sustainable basis. Few POU measures have reached significant scale thus far, but efforts to promote and commercially distribute these products to the world's poor have only been under way for a few years.
Solar water disinfection is a low-cost method of purifying water that can often be implemented with locally available materials.Hobbins M. (2003). The SODIS Health Impact Study, Ph.D. Thesis, Swiss Tropical Institute Basel Unlike methods that rely on firewood, it has a low impact on the environment.
Globally, by 2015, 89% of people had access to water from a source that is suitable for drinkingcalled improved water sources. In sub-Saharan Africa, access to potable water ranged from 40% to 80% of the population. Nearly 4.2 billion people worldwide had access to tap water, while another 2.4 billion had access to Water well or public taps.
By 2015, 5.2 billion people representing 71% of the global population used safely managed drinking water services. As of 2017, 90% of people having access to water from a source that is suitable for drinkingcalled improved water sourceand 71% of the world could access safely managed drinking water that is clean and available on-demand. Estimates suggest that at least 25% of improved sources contain fecal contamination. 1.8 billion people still use an unsafe drinking water source which may be contaminated by Human feces. This can result in infectious diseases, such as gastroenteritis, cholera, and typhoid, among others. Reduction of waterborne diseases and development of safe water resources is a major
Sources
Supply
Quantity
Usage for general household use
Usage for drinking
Animals
Quality
Parameters to monitor quality
Drinking water quality standards
Health issues due to low quality
Diarrhea, malnutrition and stunting
Consumption of contaminated groundwater
Examples of poor drinking water quality incidents
Treatment
Point of use methods
Addition of fluoride
Global access
Accessed March 3, 2023.
Improved sources are also monitored based on whether water is available when needed (5.8 billion people), located on premises (5.4 billion), free from contamination (5.4 billion), and within a 30-minute round trip. While improved water sources such as protected piped water are more likely to provide safe and adequate water as they may prevent contact with human excreta, for example, this is not always the case. According to a 2014 study, approximately 25% of improved sources contained fecal contamination.
The population in Australia, New Zealand, North America and Europe have achieved nearly universal basic drinking water services.
Because of the high initial investments, many less wealthy nations cannot afford to develop or sustain appropriate infrastructure, and as a consequence people in these areas may spend a correspondingly higher fraction of their income on water. 2003 statistics from El Salvador, for example, indicate that the poorest 20% of households spend more than 10% of their total income on water. In the United Kingdom, authorities define spending of more than 3% of one's income on water as a hardship. page 51 Referenced 20 October 2008
Access to safe drinking water is indicated by safe water sources. These improved drinking water sources include household connection, public standpipe, borehole condition, protected dug well, protected spring, and rain water collection. Sources that do not encourage improved drinking water to the same extent as previously mentioned include: unprotected wells, unprotected springs, rivers or ponds, vender-provided water, bottled water (consequential of limitations in quantity, not quality of water), and tanker truck water. Access to sanitary water comes hand in hand with access to improved sanitation facilities for excreta, such as connection to public sewer, connection to septic system, or a pit latrine with a slab or water seal.
According to this indicator on improved water sources, the MDG was met in 2010, five years ahead of schedule. Over 2 billion more people used improved drinking water sources in 2010 than did in 1990. However, the job is far from finished. 780 million people are still without improved sources of drinking water, and many more people still lack safe drinking water. Estimates suggest that at least 25% of improved sources contain fecal contamination and an estimated 1.8 billion people globally use a source of drinking water that suffers from fecal contamination. The quality of these sources varies over time and often gets worse during the wet season. Continued efforts are needed to reduce urban-rural disparities and inequities associated with poverty; to dramatically increase safe drinking water coverage in countries in sub-Saharan Africa and Oceania; to promote global monitoring of drinking water quality; and to look beyond the MDG target towards universal coverage.
In England and Wales there are two water industry regulatory authorities.
The functions and duties of the bodies are formally defined in the Water Industry Act 1991 (1991 c. 56) as amended by the Water Act 2003 (2003 c. 37) and the Water Act 2014 (2014 c. 21).
In Scotland water quality is the responsibility of independent Drinking Water Quality Regulator (DWQR).
In Northern Ireland the Drinking Water Inspectorate (DWI) regulates drinking water quality of public and private supplies. The current standards of water quality are defined in the Water Supply (Water Quality) Regulations (Northern Ireland) 2017.
|
|