Product Code Database
Example Keywords: undershirt -blackberry $33
   » » Wiki: Polycaprolactone
Tag Wiki 'Polycaprolactone'.
Tag

Polycaprolactone ( PCL) is a synthetic, semi-crystalline, with a of about 60 °C and a glass transition temperature of about −60 °C.

(2025). 9780123969835, Elsevier.
The most common use of polycaprolactone is in the production of speciality . Polycaprolactones impart good resistance to water, oil, solvent and chlorine to the produced.

This polymer is often used as an additive for resins to improve their processing characteristics and their end use properties (e.g., ). Being compatible with a range of other materials, PCL can be mixed with to lower its cost and increase or it can be added as a polymeric to polyvinyl chloride (PVC).

Polycaprolactone is also used for splinting, modeling, and as a feedstock for prototyping systems such as fused filament fabrication 3D printers.


Synthesis
PCL is prepared by ring opening polymerization of using a such as . A wide range of catalysts can be used for the ring opening polymerization of caprolactone. Low molecular weight alcohols are commonly added to regulate the molecular weight of the polymer.


Biomedical applications
PCL is degraded by of its linkages in physiological conditions (such as in the human body) and has therefore received a great deal of attention for use as an implantable . In particular it is especially interesting for the preparation of long term implantable devices, owing to its degradation which is even slower than that of .

Https://doi.org/10.3390/polym16111511< /ref>

PCL has been approved by the Food and Drug Administration (FDA) in specific applications used in the human body as (for example) a device, , or . PCL is used in the rapidly growing field of human esthetics following the recent introduction of a PCL-based microsphere belonging to the collagen stimulator class (Ellansé).

Through the stimulation of collagen production, PCL-based products are able to reduce facial ageing signs such as volume loss and contour laxity, providing an immediate and long-lasting natural effect. It is being investigated as a scaffold for tissue repair by tissue engineering, . It has been used as the hydrophobic block of synthetic block used to form the vesicle membrane of .

A variety of drugs have been encapsulated within PCL beads for controlled release and targeted drug delivery.

In dentistry (as the composite named Resilon), it is used as a component of "night guards" (dental splints) and in filling. It performs like , has similar handling properties, and for re-treatment purposes may be softened with heat, or dissolved with solvents like chloroform. Similar to gutta-percha, there are master cones in all ISO sizes and accessory cones in different sizes and taper available. The major difference between the polycaprolactone-based root canal filling material (Resilon and Real Seal) and gutta-percha is that the PCL-based material is biodegradable, whereas gutta-percha is not. There is a lack of consensus in the expert dental community as to whether a biodegradable root canal filling material, such as Resilon or Real Seal is desirable.


Hobbyist and prototyping
PCL also has many applications in the hobbyist market where it is known as Re-Form, Polydoh, Plastimake, NiftyFix, Protoplastic, InstaMorph, Polymorph, Shapelock, ReMoldables, Plastdude, TechTack, or Friendly Plastic. It has physical properties of a very tough, nylon-like plastic that softens to a putty-like consistency at only 60 °C, easily achieved by immersing in hot water. PCL's specific heat and conductivity are low enough that it is not hard to handle by hand at this temperature. This makes it ideal for small-scale modeling, part fabrication, repair of plastic objects, and rapid prototyping where heat resistance is not needed. Though softened PCL readily sticks to many other plastics when at higher temperature, if the surface is cooled, the stickiness can be minimized while still leaving the mass pliable.


Biodegradation
and can degrade PCL. sp. strain 26-1 can degrade high density PCL; though not as quickly as thermotolerant sp. strain ST-01. Species of can degrade PCL under anaerobic conditions.


See also


Further reading
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time