The Pioneer anomaly, or Pioneer effect, was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by anisotropy radiation pressure caused by the spacecraft's heat loss.
Both Pioneer spacecraft are escaping the Solar System but are slowing under the influence of the Sun's gravity. Upon very close examination of navigational data, the spacecraft were found to be slowing slightly more than expected. The effect is an extremely small acceleration towards the Sun, of , which is equivalent to a reduction of the outbound velocity by over a period of ten years. The two spacecraft were launched in 1972 and 1973. The anomalous acceleration was first noticed as early as 1980 but not seriously investigated until 1994. The last communication with either spacecraft was in 2003, but analysis of recorded data continues.
Various explanations, both of spacecraft behavior and of gravitation itself, were proposed to explain the anomaly. Over the period from 1998 to 2012, one particular explanation became accepted. The spacecraft, which are surrounded by an ultra-high vacuum and are each powered by a radioisotope thermoelectric generator (RTG), can shed heat only via thermal radiation. If, due to the design of the spacecraft, more heat is emitted in a particular direction by what is known as a radiative anisotropy, then the spacecraft would accelerate slightly in the direction opposite of the excess emitted radiation due to the recoil of thermal . If the excess radiation and attendant radiation pressure were pointed in a general direction opposite the Sun, the spacecraft's velocity away from the Sun would be decreasing at a rate greater than could be explained by previously recognized forces, such as gravity and trace friction due to the interplanetary medium (imperfect vacuum).
By 2012, several papers by different groups, all reanalyzing the thermal radiation pressure forces inherent in the spacecraft, showed that a careful accounting of this explains the entire anomaly; thus the cause is mundane and does not point to any new phenomenon or need to update the laws of physics. The most detailed analysis to date, by some of the original investigators, explicitly looks at two methods of estimating thermal forces, concluding that there is "no statistically significant difference between the two estimates and ... that once the thermal recoil force is properly accounted for, no anomalous acceleration remains."
Because the spacecraft were flying with almost no additional stabilization thrusts during their "cruise", it is possible to characterize the density of the solar medium by its effect on the spacecraft's motion. In the outer Solar System this effect would be easily calculable, based on ground-based measurements of the Outer space environment. When these effects were taken into account, along with all other known effects, the calculated position of the Pioneers did not agree with measurements based on timing the return of the radio signals being sent back from the spacecraft. These consistently showed that both spacecraft were closer to the inner Solar System than they should be, by thousands of —small compared to their distance from the Sun, but still statistically significant. This apparent discrepancy grew over time as the measurements were repeated, suggesting that whatever was causing the anomaly was still acting on the spacecraft.
As the anomaly was growing, it appeared that the spacecraft were moving more slowly than expected. Measurements of the spacecraft's speed using the Doppler effect demonstrated the same thing: the observed redshift was less than expected, which meant that the Pioneers had slowed down more than expected.
When all known forces acting on the spacecraft were taken into consideration, a very small but unexplained force remained. It appeared to cause an approximately constant acceleration of for both spacecraft. If the positions of the spacecraft were predicted one year in advance based on measured velocity and known forces (mostly gravity), they were actually found to be some closer to the sun at the end of the year. This anomaly is now believed to be accounted for by thermal recoil forces.
One by one these objections were addressed. Many of the old telemetry records were found, and converted to modern formats.See pp. 10–15 in This gave power consumption figures and some temperatures for parts of the spacecraft. Several groups built detailed thermal models, which could be checked against the known temperatures and powers, and allowed a quantitative calculation of the recoil force. The longer span of navigational records showed the acceleration was in fact decreasing.
In July 2012, Slava Turyshev et al. published a paper in Physical Review Letters that explained the anomaly. The work explored the effect of the thermal recoil force on Pioneer 10, and concluded that "once the thermal recoil force is properly accounted for, no anomalous acceleration remains." Although the paper by Turyshev et al. has the most detailed analysis to date, the explanation based on thermal recoil force has the support of other independent research groups, using a variety of computational techniques. Examples include "thermal recoil pressure is not the cause of the Rosetta flyby anomaly but likely resolves the anomalous acceleration observed for Pioneer 10." and "It is shown that the whole anomalous acceleration can be explained by thermal effects".
The Voyager program flew a mission profile similar to the Pioneers, but were not spin stabilized. Instead, they required frequent firings of their thrusters for attitude control to stay aligned with Earth. Spacecraft like the Voyagers acquire small and unpredictable changes in speed as a side effect of the frequent attitude control firings. This 'noise' makes it impractical to measure small accelerations such as the Pioneer effect; accelerations as large as 10−9 m/s2 would be undetectable.
Newer spacecraft have used spin stabilization for some or all of their mission, including both Galileo and Ulysses. These spacecraft indicate a similar effect, although for various reasons (such as their relative proximity to the Sun) firm conclusions cannot be drawn from these sources. The Cassini mission has as well as thrusters for attitude control, and during cruise could rely for long periods on the reaction wheels alone, thus enabling precision measurements. It also had radioisotope thermoelectric generators (RTGs) mounted close to the spacecraft body, radiating kilowatts of heat in hard-to-predict directions.In particular, Appendix C.
After Cassini arrived at Saturn, it shed a large fraction of its mass from the fuel used in the insertion burn and the release of the Huygens probe. This increases the acceleration caused by the radiation forces because they are acting on less mass. This change in acceleration allows the radiation forces to be measured independently of any gravitational acceleration. Comparing cruise and Saturn-orbit results shows that for Cassini, almost all the unmodelled acceleration was due to radiation forces, with only a small residual acceleration, much smaller than the Pioneer acceleration, and with opposite sign.
The non-gravitational acceleration of the deep space probe New Horizons has been measured at about sunward, somewhat larger than the effect on Pioneer. Modelling of thermal effects indicates an expected sunward acceleration of , and given the uncertainties, the acceleration appears consistent with thermal radiation as the source of the non-gravitational forces measured. The measured acceleration is slowly decreasing as would be expected from the decreasing thermal output of the RTG.
First, the anomaly has an apparent annual periodicity and an apparent Earth sidereal daily periodicity with amplitudes that are formally greater than the error budget. However, the same paper also states this problem is most likely not related to the anomaly: "The annual and diurnal terms are very likely different manifestations of the same modeling problem. ... Such a modeling problem arises when there are errors in any of the parameters of the spacecraft orientation with respect to the chosen reference frame."
Second, the value of the anomaly measured over a period during and after the Pioneer 11 Saturn encounter had a relatively high uncertainty and a significantly lower value.
The Turyshev, et al. 2012 paper compared the thermal analysis to the Pioneer 10 only. The Pioneer anomaly was unnoticed until after Pioneer 10 passed its Saturn encounter. However, the most recent analysis states: "Figure 2 is strongly suggestive that the previously reported "onset" of the Pioneer anomaly may in fact be a simple result of mis-modeling of the solar thermal contribution; this question may be resolved with further analysis of early trajectory data".
If the Pioneer anomaly had been a gravitational effect due to some long-range modifications of the known laws of gravity, it did not affect the orbital motions of the major natural bodies in the same way (in particular those moving in the regions in which the Pioneer anomaly manifested itself in its presently known form). Hence a gravitational explanation would need to
violate the equivalence principle, which states that all objects are affected the same way by gravity. It was therefore argued
The magnitude of the Pioneer effect () is numerically quite close to the product () of the speed of light and the Hubble constant , hinting at a cosmological connection, but this is now believed to be of no particular significance.
In fact the latest Jet Propulsion Laboratory review (2010) undertaken by Slava Turyshev and Toth
claims to rule out the cosmological connection by considering rather conventional sources whereas other scientists provided a disproof based on the physical implications of cosmological models themselves.
Gravitationally bound objects such as the Solar System, or even the Milky Way, are not supposed to partake of the expansion of the universe—this is known both from conventional theory
and by direct measurement.
This does not necessarily interfere with paths new physics can take with drag effects from planetary secular accelerations of possible cosmological origin.
The effect is so small that it could be a statistical anomaly caused by differences in the way data were collected over the lifetime of the probes. Numerous changes were made over this period, including changes in the receiving instruments, reception sites, data recording systems and recording formats.
From their data, Anderson's team deduced a steady frequency drift of over eight years. This could be mapped on to a clock acceleration theory, which meant all clocks would be changing in relation to a constant acceleration: in other words, that there would be a non-uniformity of time. Moreover, for such a distortion related to time, Anderson's team reviewed several models in which time distortion as a phenomenon is considered. They arrived at the "clock acceleration" model after completion of the review. Although the best model adds a quadratic term to defined International Atomic Time, the team encountered problems with this theory. This then led to non-uniform time in relation to a constant acceleration as the most likely theory. non-uniform time in relation to a constant acceleration is a summarized term derived from the source or sources used for this sub-section.
The Pioneer spacecraft are no longer providing new data (the last contact was on 23 January 2003)
and other deep-space missions that might be studied ( Galileo and Cassini-Huygens) were deliberately disposed of in the atmospheres of Jupiter and Saturn respectively at the ends of their missions. This leaves several remaining options for further research:
Previously proposed explanations
Also published in
that increasingly accurate measurements and modelling of the motions of the outer planets and their satellites undermined the possibility that the Pioneer anomaly is a phenomenon of gravitational origin. However, others believed that our knowledge of the motions of the outer planets and dwarf planet Pluto was still insufficient to disprove the gravitational nature of the Pioneer anomaly.
The same authors ruled out the existence of a gravitational Pioneer-type extra-acceleration in the outskirts of the Solar System by using a sample of Trans-Neptunian objects.
Deceleration model
Gravity
Drag
Gas leaks
Observational or recording errors
New physics
Clock acceleration
Definition of gravity modified
Definition of inertia modified
Parametric time
Antonio Fernández-Rañada and Alfredo Tiemblo-Ramos propose "an explanation of the Pioneer anomaly that is a refinement of a previous one and is fully compatible with the cartography of the solar system. It is based on the non-equivalence of the atomic time and the astronomical time that happens to have the same observational fingerprint as the anomaly."
Celestial ephemerides in an expanding universe
Further research avenues
The Pioneer Explorer Collaboration was formed to study the Pioneer Anomaly and has hosted three meetings (2005, 2007, and 2008) at International Space Science Institute in Bern, Switzerland, to discuss the anomaly, and discuss possible means for resolving the source.
The ISSI meeting above has an excellent reference list divided into sections such as primary references, attempts at explanation, proposals for new physics, possible new missions, popular press, and so on. A sampling of these are shown here:
|
|