Lower-molecular-weight phthalates are typically replaced in many products in the United States, Canada, and European Union over health concerns. They are being replaced by higher molecular-weight phthalates as well as non-phthalic plasticizers.
Phthalates are commonly ingested in small quantities via the diet. One of the most commonly known phthalates is bis(2-ethylhexyl) phthalate (DEHP). In many countries DEHP is regulated as a toxin, and is banned from use in broad categories of consumer goods, such as cosmetics, children's toys, medical devices, and food packaging.
There are numerous forms of phthalates not regulated by governments.
The conversion is conducted at high temperatures to drive off the water. Typical catalysts are based on tin or titanium alkoxides or carboxylates.
The properties of the phthalate can be varied by changing the alcohol. Around 30 are, or have been, commercially important. Phthalates' share of the global plasticisers market has been decreasing since around 2000 however total production has been increasing, with around 5.5 million tonnes made in 2015, up from around 2.7 million tonnes in the 1980s. The explanation for this is the increasing size of the plasticiser market, largely due driven by increases in PVC production, which nearly doubled between 2000 and 2020. The People's Republic of China is the largest consumer, accounting for around 45% of all use. Europe and the United States together account for around 25% of use, with the remainder widely spread around the world.
Historically DINP, DEHP, BBP, DBP, and DIHP have been the most important phthalates, however many of these are now facing regulatory pressure and gradual phase-outs. Almost all phthalates derived from alcohols with between 3 and 8 carbons are classed as toxic by ECHA. This includes Bis(2-ethylhexyl) phthalate (DEHP or DOP), which has long been the most widely used phthalate, with commercial production beginning in the 1930s. In the EU, the use of DEHP is restricted under REACH and it can only be used in specific cases if an authorisation has been granted; similar restrictions exist in many other jurisdictions. Despite this, the phase-out of DEHP is slow and it was still the most frequently used plasticizer in 2018, with an estimated global production of 3.24 million tonnes. DINP and DIDP are used as a substitutes for DEHP in many applications, as they are not classified as hazardous. Non-phthalate plasticizers are also being increasingly used.
Other plasticised polymer systems include polyvinyl butyral (particularly the forms used to make laminated glass), PVA and its co-polymers like PVCA. They are also compatible in nylon, polystyrene, , and certain ; but their use in these is very limited.
Phthalates can plasticise ethyl cellulose, polyvinyl acetate phthalate (PVAP) and cellulose acetate phthalate (CAP), all of which are used to make for tablet and capsule medications. These coatings protect drugs from the acidity of the stomach, but allow their release and absorption in the intestines.
Diallyl phthalate is used to prepare vinyl ester resins with good electrical insulation properties. These resins are used to manufacture of electronics components.
The mechanism by which phthalates and related compounds plasticize polar polymers has been a subject of intense study since the 1960s. The mechanism is one of polar interactions between the polar centres of the phthalate molecule (the C=O functionality) and the positively charged areas of the vinyl chain, typically residing on the carbon atom of the carbon-chlorine bond. For this to be established, the polymer must be heated in the presence of the plasticizer, first above the Tg of the polymer and then into a melt state. This enables an intimate mix of polymer and plasticizer to be formed, and for these interactions to occur. When cooled, these interactions remain and the network of PVC chains cannot reform (as is present in unplasticized PVC, or PVC-U). The alkyl chains of the phthalate then screen the PVC chains from each other as well. They are blended within the plastic article as a result of the manufacturing process.
Because they are not chemical bond to the host , phthalates are released from the plastic article by relatively gentle means. For example, they can be extracted by extraction with organic solvents and, to some extent, by handling.
Many bio-based plasticizers based on vegetable oil have been developed.
Higher dust concentrations of DEHP were found in homes of children with asthma and allergies, compared with healthy children's homes. The author of the study stated, "The concentration of DEHP was found to be significantly associated with wheezing in the last 12 months as reported by the parents." Phthalates were found in almost every sampled home in Bulgaria. The same study found that DEHP, BBzP, and DnOP were in significantly higher concentrations in dust samples collected in homes where polishing agents were used. Data on flooring materials was collected, but there was not a significant difference in concentrations between homes where no polish was used that have balatum (PVC or linoleum) flooring and homes with wood. High frequency of dusting did decrease the concentration.
In general, children's exposure to phthalates is greater than that of adults. In a 1990s Canadian study that modeled ambient exposures, it was estimated that daily exposure to DEHP was 9 μg/kg bodyweight/day in infants, 19 μg/kg bodyweight/day in toddlers, 14 μg/kg bodyweight/day in children, and 6 μg/kg bodyweight/day in adults. Infants and toddlers are at the greatest risk of exposure, because of their mouthing behavior. Body-care products containing phthalates are a source of exposure for infants. The authors of a 2008 study "observed that reported use of infant lotion, infant powder, and infant shampoo were associated with increased infant urine concentrations of phthalate, and this association is strongest in younger infants. These findings suggest that dermal exposures may contribute significantly to phthalate body burden in this population." Although they did not examine health outcomes, they noted that "Young infants are more vulnerable to the potential adverse effects of phthalates given their increased dosage per unit body surface area, metabolic capabilities, and developing endocrine and reproductive systems."
Infants and hospitalized children are particularly susceptible to phthalate exposure. Medical devices and tubing may contain 20–40% Di(2-ethylhexyl) phthalate (DEHP) by weight, which "easily leach out of tubing when heated (as with warm saline / blood)". Several medical devices contain phthalates including, but not limited to, IV tubing, gloves, nasogastric tubes, and respiratory tubing. The Food and Drug Administration did an extensive risk assessment of phthalates in the medical setting and found that neonates may be exposed to five times greater than the allowed daily tolerable intake. This finding led to the conclusion by the FDA that, "children undergoing certain medical procedures may represent a population at increased risk for the effects of DEHP".
In 2008, the Danish Environmental Protection Agency (EPA) found a variety of phthalates in and warned of health risks when children regularly suck and chew on them. The European Commission Scientific Committee on Health and Environmental Risks (SCHER), however, considers that, even in the case when children bite off pieces from erasers and swallow them, it is unlikely that this exposure leads to health consequences.
In 2008, the United States National Research Council recommended that the cumulative effects of phthalates and other antiandrogens be investigated. It criticized U.S. EPA guidances which stipulate that when examining cumulative effects, the chemicals examined should have similar mechanisms of action or similar structures, qualifying them as too restrictive. It recommended instead that the effects of chemicals that cause similar adverse outcomes should be examined cumulatively.
Diet is believed to be the main source of DEHP and other phthalates in the general population. Fatty foods such as milk, butter, and meats are a major source. Studies show that exposure to phthalates is greater from ingestion of certain foods, rather than exposure via water bottles, as is most often first thought of with plastic chemicals. Low-molecular-weight phthalates such as DEP, DBP, BBzP may be dermally absorbed. Inhalational exposure is also significant with the more volatile phthalates. PVC tubing, vinyl gloves used in food handling, and food packaging may serve as potential sources of phthalate contamination in fast food.
One study, conducted between 2003 and 2010 analysing data from 9,000 individuals, found that those who reported that they had eaten at a fast food restaurant had much higher levels of two separate phthalates—DEHP and DiNP—in their urine samples. Even small consumption of fast food caused higher presence of phthalates. "People who reported eating only a little fast food had DEHP levels that were 15.5 percent higher and DiNP levels that were 25 percent higher than those who said they had eaten none. For people who reported eating a sizable amount, the increase was 24 percent and 39 percent, respectively." Phthalates have a short half-life of less than five hours, so their widespread presence likely indicates continuous exposure rather than long-term accumulation in the body.
Common plasticizers such as DEHP are only weakly volatile. Higher air temperatures result in higher concentrations of phthalates in the air. PVC flooring leads to higher concentrations of BBP and DEHP, which are more prevalent in dust. A 2012 Swedish study of children found that phthalates from PVC flooring were taken up into their bodies, showing that children can ingest phthalates not only from food but also by breathing and through the skin.
A 2024 review indicated that exposure of mothers to environmental phthalates may have adverse pregnancy outcomes, such as a higher miscarriage rate and lower birth weights. Another review showed small reductions in lung function in adolescents and children who had been exposed to phthalates.
A 2017 review indicated ways to avoid exposure to phthalates: (1) eating a balanced diet to avoid ingesting too many endocrine disruptors from a single source, (2) eliminating canned or packaged food in order to limit ingestion of DEHP phthalates leached from plastics, and (3) eliminating use of any personal product such as moisturizer, perfume, or cosmetics that contain phthalates. Exposure to phthalates may increase the risk of asthma.
A 2018 study indicated that exposure to phthalates during developmental stages in childhood may negatively affect adipose tissue function and metabolic homeostasis, possibly increasing the risk of obesity.
The European Chemicals Agency (European Union, EU) regards ortho-phthalates, such as DEHP, dibutyl phthalate, diisobutyl phthalate, and benzyl butyl phthalate as potentially harmful to fertility, unborn babies, and the endocrine system. The EU also regulates some phthalates to protect the environment.
Twenty of the 28 phthalate substances under national screening programs are considered possible risks to human health or the environment. As of 2021, regulations to protect the environment against DEHP and B79P have not been enacted.
Generally, the high molecular weight phthalates DINP, DIDP, and DPHP have been registered under REACH and have demonstrated their safety for use in current applications. They are not classified for any health or environmental effects.
The low molecular weight products BBP, DEHP, DIBP, and DBP were added to the Candidate list of Substances for Authorisation under REACH in 2008–09, and added to the Authorisation list, Annex XIV, in 2012. This means that from February 2015 they are not allowed to be produced in the EU unless authorisation has been granted for a specific use, although they may still be imported in consumer products. The creation of an Annex XV dossier, which could ban the import of products containing these chemicals, was being prepared jointly by the ECHA and Danish authorities, and expected to be submitted by April 2016.
Since 2021, the European Waste Framework Directive requires manufacturers, importers and distributors of products containing phthalates on the REACH Candidate List to notify the European Chemicals Agency.
In November 2021, the European Commission added endocrine disrupting properties to DEHP and other phthalates, meaning that companies must apply for REACH authorization for some uses that were previously exempted, including in food packaging, medical devices, and drug packaging.
In 1986, California voters approved an initiative to address concerns about exposure to toxic chemicals. That initiative became the Safe Drinking Water and Toxic Enforcement Act of 1986, also called Proposition 65. In December 2013, DINP was listed as a chemical "known to the State of California to cause cancer" Beginning in December 2014, companies with ten or more employees manufacturing, distributing or selling the product(s) containing DINP were required to provide a clear and reasonable warning for that product. The California Office of Environmental Health Hazard Assessment, charged with maintaining the Proposition 65 list and enforcing its provisions, has implemented a "No Significant Risk Level" of 146 μg/day for DINP.
The CDC provided a 2011 public health statement on diethyl phthalate describing regulations and guidelines concerning its possible harmful health effects. Under laws for Superfund sites, the Environmental Protection Agency named diethyl phthalate as a hazardous substance. The Occupational Safety and Health Administration stated that the maximum amount of diethyl phthalate allowed in workroom air during an 8-hour workday, 40-hour workweek, is 5 milligrams per cubic meter.
Polyethylene terephthalate (PET, PETE, Terylene, Dacron) is the main substance used to package bottled water and many sodas. Products containing PETE are labeled "Type 1" (with a "1" in the recycle triangle). Although the word "phthalate" appears in the name, PETE does not use phthalates as plasticizers. The terephthalate polymer PETE and the phthalate ester plasticizers are chemically different substances. Despite this, however, many studies have found phthalates, such as DEHP in bottled water and soda. One hypothesis is that these may have been introduced during plastic recycling.
+ Common phthalates
Ordered by molecular weight, commercially important compounds shown in bold Under assessment as endocrine disrupting Skin sensitising Toxic to reproduction, endocrine disrupting. Toxic to reproduction, endocrine disrupting Toxic to reproduction Toxic to reproduction Toxic to reproduction, endocrine disrupting, skin sensitising Toxic to reproduction, endocrine disrupting Toxic to reproduction Toxic to reproduction Toxic to reproduction Toxic to reproduction, endocrine disrupting Not classified but some uses restricted Toxic to reproduction Not classified but some uses restricted Under assessment as endocrine disrupting
Uses
PVC plasticisers
+ PVC properties as a function of phthalate plasticizer level
(type A, 15 s) !! Flexural stiffness (Megapascal) !! Tensile strength (Mpa) !! Elongation at break (%) !! Example applications
Non-PVC plasticisers
Solvent and phlegmatizer
Other uses
History
Properties
Alternatives
Occurrence and exposure
Human exposure
Food
Air
Natural occurrence
Biodegradation
Research
Legal status
Australia and New Zealand
Canada
European Union
Legislation, additional
United States
Identification in plastics
See also
Further reading
External links
|
|