Photoperiod is the change of day length around the seasons. The rotation of the earth around its axis produces 24 hour changes in light (day) and dark (night) cycles on earth. The length of the light and dark in each phase varies across the seasons due to the Axial tilt. The photoperiod defines the length of the light. For example, in summer the length of light could be 16 hours while the dark is 8 hours, whereas in winter the length of day could be 8 hours, while the dark is 16 hours. Importantly, the seasons are different in the northern hemisphere than the southern hemisphere.
Photoperiodism is the Physiology reaction of Organism to the length of light or a dark period. It occurs in and . Plant photoperiodism can also be defined as the developmental responses of plants to the relative lengths of light and dark periods. They are classified under three groups according to the photoperiods: short-day plants, long-day plants, and day-neutral plants.
In animals, photoperiodism (sometimes called seasonality) is the suite of physiological changes that occur in response to changes in day length. This allows animals to respond to a temporally changing environment associated with changing seasons as the earth orbits the sun.
Many (angiosperms) use a circadian rhythm together with photoreceptor protein, such as phytochrome or cryptochrome,
Phytochrome comes in two forms: Pr and Pfr. Red light (which is present during the day) converts phytochrome to its active form (Pfr) which then stimulates various processes such as germination, flowering or branching. In comparison, plants receive more far-red in the shade, and this converts phytochrome from Pfr to its inactive form, Pr, inhibiting germination. This system of Pfr to Pr conversion allows the plant to sense when it is night and when it is day. Pfr can also be converted back to Pr by a process known as dark reversion, where long periods of darkness trigger the conversion of Pfr. This is important in regards to plant flowering. Experiments by Halliday et al. showed that manipulations of the red-to far-red ratio in Arabidopsis can alter flowering. They discovered that plants tend to flower later when exposed to more red light, proving that red light is inhibitory to flowering. Other experiments have proven this by exposing plants to extra red-light in the middle of the night. A short-day plant will not flower if light is turned on for a few minutes in the middle of the night and a long-day plant can flower if exposed to more red-light in the middle of the night.
Cryptochrome are another type of photoreceptor that is important in photoperiodism. Cryptochromes absorb blue light and UV-A. Cryptochromes entrain the circadian clock to light. It has been found that both cryptochrome and phytochrome abundance relies on light and the amount of cryptochrome can change depending on day-length. This shows how important both of the photoreceptors are in regards to determining day-length.
Modern biologists believe that it is the coincidence of the active forms of phytochrome or cryptochrome, created by light during the daytime, with the rhythms of the circadian clock that allows plants to measure the length of the night. Other than flowering, photoperiodism in plants includes the growth of stems or roots during certain seasons and the loss of leaves. Artificial lighting can be used to induce extra-long days.
Some long-day obligate plants are:
Some long-day facultative plants are:
Short-day plants flower as days grow shorter (and nights grow longer) after September 21st in the northern hemisphere, which is during summer or fall. The length of the dark period required to induce flowering differs among species and varieties of a species.
Photoperiodism affects flowering by inducing the shoot to produce floral buds instead of leaves and lateral buds.
Some short-day facultative plants are:
In , sensitivity to photoperiod has been proven to be initiated by photoreceptors located in the brain. Photoperiod can affect insects at different life stages, serving as an environmental cue for physiological processes such as diapause induction and termination, and seasonal morphs. In the water strider Aquarius paludum, for instance, photoperiod conditions during nymphal development have been shown to trigger seasonal changes in wing frequency and also induce diapause, although the threshold critical day lengths for the determination of both traits diverged by about an hour. In Gerris buenoi, another water strider species, photoperiod has also been shown to be the cause of wing polyphenism, although the specific daylengths changed between species, suggesting that phenotypic plasticity in response to photoperiod has evolved even between relatively closely related species.
The singing frequency of birds such as the Domestic Canary depends on the photoperiod. In the spring, when the photoperiod increases (more daylight), the male canary's testes grow. As the testes grow, more Androgen are secreted and song frequency increases. During autumn, when the photoperiod decreases (less daylight), the male canary's testes regress and androgen levels drop dramatically, resulting in decreased singing frequency. Not only is singing frequency dependent on the photoperiod but the song repertoire is also. The long photoperiod of spring results in a greater song repertoire. Autumn's shorter photoperiod results in a reduction in song repertoire. These behavioral photoperiod changes in male canaries are caused by changes in the song center of the brain. As the photoperiod increases, the high vocal center (HVC) and the robust nucleus of the archistriatum (RA) increase in size. When the photoperiod decreases, these areas of the brain regress.
Many mammals, particularly those inhabiting temperate and polar regions, exhibit a remarkable degree of seasonality in response to changes in daylight hours(photoperiod). This seasonality manifests in a broad spectrum of behaviors and physiology, including hibernation, seasonal migrations, and coat color changes. A prime example of the adaptation to photoperiods is the seasonal coat color (SCC) species. These animals undergo molting, transforming from dark summer fur to white coat in winter, that provides crucial camouflage in snowy environments.
|
|