A perimeter is the length of a closed boundary that encompasses, surrounds, or outlines either a two-dimensional shape or a one-dimensional line. The perimeter of a circle or an ellipse is called its circumference.
Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution. Similarly, the amount of string wound around a spool is related to the spool's perimeter; if the length of the string was exact, it would equal the perimeter.
+ ! shape !! formula | variables |
where is the radius of the circle and is the diameter. | |
where is the radius of the semicircle. | |
where , and are the lengths of the sides of the triangle. | |
where is the side length. | |
where is the length and is the width. | |
where is the number of sides and is the length of one of the sides. | |
where is the number of sides and is the distance between center of the polygon and one of the vertices of the polygon. | |
where is the length of the -th (1st, 2nd, 3rd ... nth) side of an n-sided polygon. |
A generalized notion of perimeter, which includes bounding volumes in -dimensional , is described by the theory of .
The perimeter of a polygon equals the summation of the lengths of its sides (edges). In particular, the perimeter of a rectangle of width and length equals
An equilateral polygon is a polygon which has all sides of the same length (for example, a rhombus is a 4-sided equilateral polygon). To calculate the perimeter of an equilateral polygon, one must multiply the common length of the sides by the number of sides.
A regular polygon may be characterized by the number of its sides and by its circumradius, that is to say, the constant distance between its centre and each of its vertices. The length of its sides can be calculated using trigonometry. If is a regular polygon's radius and is the number of its sides, then its perimeter is
A splitter of a triangle is a cevian (a segment from a vertex to the opposite side) that divides the perimeter into two equal lengths, this common length being called the semiperimeter of the triangle. The three splitters of a triangle concurrent lines at the Nagel point of the triangle.
A cleaver of a triangle is a segment from the midpoint of a side of a triangle to the opposite side such that the perimeter is divided into two equal lengths. The three cleavers of a triangle all intersect each other at the triangle's Spieker center.
In terms of the radius of the circle, this formula becomes,
To calculate a circle's perimeter, knowledge of its radius or diameter and the number suffices. The problem is that is not rational number (it cannot be expressed as the quotient of two ), nor is it algebraic number (it is not a root of a polynomial equation with rational coefficients). So, obtaining an accurate approximation of is important in the calculation. The computation of the digits of is relevant to many fields, such as mathematical analysis, algorithmics and computer science.
Proclus (5th century) reported that Greek peasants "fairly" parted fields relying on their perimeters. However, a field's production is proportional to its area, not to its perimeter, so many naive peasants may have gotten fields with long perimeters but small areas (thus, few crops).
If one removes a piece from a figure, its area decreases but its perimeter may not. The convex hull of a figure may be visualized as the shape formed by a rubber band stretched around it. In the animated picture on the left, all the figures have the same convex hull; the big, first hexagon.
This problem may seem simple, but its mathematical proof requires some sophisticated theorems. The isoperimetric problem is sometimes simplified by restricting the type of figures to be used. In particular, to find the quadrilateral, or the triangle, or another particular figure, with the largest area amongst those with the same shape having a given perimeter. The solution to the quadrilateral isoperimetric problem is the square, and the solution to the triangle problem is the equilateral triangle. In general, the polygon with sides having the largest area and a given perimeter is the regular polygon, which is closer to being a circle than is any irregular polygon with the same number of sides.
|
|