In plasma physics, the particle-in-cell ( PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles (or fluid elements) in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.
PIC methods were already in use as early as 1955,
Models which include interactions of particles only through the average fields are called PM (particle-mesh). Those which include direct binary interactions are PP (particle-particle). Models with both types of interactions are called PP-PM or P3M.
Since the early days, it has been recognized that the PIC method is susceptible to error from so-called discrete particle noise.
Modern geometric PIC algorithms are based on a very different theoretical framework. These algorithms use tools of discrete manifold, interpolating differential forms, and canonical or non-canonical symplectic integrators to guarantee gauge invariant and conservation of charge, energy-momentum, and more importantly the infinitely dimensional symplectic structure of the particle-field system.
The number of real particles corresponding to a super-particle must be chosen such that sufficient statistics can be collected on the particle motion. If there is a significant difference between the density of different species in the system (between ions and neutrals, for instance), separate real to super-particle ratios can be used for them.
The schemes used for the particle mover can be split into two categories, implicit and explicit solvers. While implicit solvers (e.g. implicit Euler scheme) calculate the particle velocity from the already updated fields, explicit solvers use only the old force from the previous time step, and are therefore simpler and faster, but require a smaller time step. In PIC simulation the leapfrog method is used, a second-order explicit method.
For plasma applications, the leapfrog method takes the following form:
where the subscript refers to "old" quantities from the previous time step, to updated quantities from the next time step (i.e. ), and velocities are calculated in-between the usual time steps .
The equations of the Boris scheme which are substitute in the above equations are:
with
Because of its excellent long term accuracy, the Boris algorithm is the de facto standard for advancing a charged particle. It was realized that the excellent long term accuracy of nonrelativistic Boris algorithm is due to the fact it conserves phase space volume, even though it is not symplectic. The global bound on energy error typically associated with symplectic algorithms still holds for the Boris algorithm, making it an effective algorithm for the multi-scale dynamics of plasmas. It has also been shown that one can improve on the relativistic Boris push to make it both volume preserving and have a constant-velocity solution in crossed E and B fields.
With the FDM, the continuous domain is replaced with a discrete grid of points, on which the electric field and magnetic field fields are calculated. Derivatives are then approximated with differences between neighboring grid-point values and thus PDEs are turned into algebraic equations.
Using FEM, the continuous domain is divided into a discrete mesh of elements. The PDEs are treated as an eigenvalue problem and initially a trial solution is calculated using that are localized in each element. The final solution is then obtained by optimization until the required accuracy is reached.
Also spectral methods, such as the fast Fourier transform (FFT), transform the PDEs into an eigenvalue problem, but this time the basis functions are high order and defined globally over the whole domain. The domain itself is not discretized in this case, it remains continuous. Again, a trial solution is found by inserting the basis functions into the eigenvalue equation and then optimized to determine the best values of the initial trial parameters.
where is the coordinate of the particle and the observation point. Perhaps the easiest and most used choice for the shape function is the so-called cloud-in-cell (CIC) scheme, which is a first order (linear) weighting scheme. Whatever the scheme is, the shape function has to satisfy the following conditions: space isotropy, charge conservation, and increasing accuracy (convergence) for higher-order terms.
The fields obtained from the field solver are determined only on the grid points and can't be used directly in the particle mover to calculate the force acting on particles, but have to be interpolated via the field weighting:
where the subscript labels the grid point. To ensure that the forces acting on particles are self-consistently obtained, the way of calculating macro-quantities from particle positions on the grid points and interpolating fields from grid points to particle positions has to be consistent, too, since they both appear in Maxwell's equations. Above all, the field interpolation scheme should conserve momentum. This can be achieved by choosing the same weighting scheme for particles and fields and by ensuring the appropriate space symmetry (i.e. no self-force and fulfilling the action-reaction law) of the field solver at the same time
In a real plasma, many other reactions may play a role, ranging from elastic collisions, such as collisions between charged and neutral particles, over inelastic collisions, such as electron-neutral ionization collision, to chemical reactions; each of them requiring separate treatment. Most of the collision models handling charged-neutral collisions use either the direct Monte-Carlo scheme, in which all particles carry information about their collision probability, or the null-collision scheme, which does not analyze all particles but uses the maximum collision probability for each charged species instead.
For an electrostatic plasma simulation using an explicit time integration scheme (e.g. leapfrog, which is most commonly used), two important conditions regarding the grid size and the time step should be fulfilled in order to ensure the stability of the solution:
which can be derived considering the harmonic oscillations of a one-dimensional unmagnetized plasma. The latter conditions is strictly required but practical considerations related to energy conservation suggest to use a much stricter constraint where the factor 2 is replaced by a number one order of magnitude smaller. The use of is typical. Not surprisingly, the natural time scale in the plasma is given by the inverse plasma frequency and length scale by the Debye length .
For an explicit electromagnetic plasma simulation, the time step must also satisfy the CFL condition:
Hybrid models may use the PIC method for the kinetic treatment of some species, while other species (that are Maxwellian) are simulated with a fluid model.
PIC simulations have also been applied outside of plasma physics to problems in solid mechanics and fluid mechanics.
where , and is the speed of light.
Applications
Electromagnetic particle-in-cell computational applications
See also
Bibliography
External links
|
|