In , the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus (or remnant of the sporangium), and the female gametophyte (formed from a haploid megaspore) in its center. The female gametophyte — specifically termed a megagametophyte — is also called the embryo sac in Flowering plant. The megagametophyte produces an ovum for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule. On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules.
In such as conifers, ovules are borne on the surface of an ovuliferous (ovule-bearing) scale, usually within an ovulate conifer cone (also called strobilus). In the early extinct Pteridosperms, ovules were borne on the surface of leaves. In the most recent of these taxa, a cupule (a modified branch or group of branches) surrounded the ovule (e.g. Caytonia or Glossopteris).
The origin of the second or outer integument has been an area of active contention for some time. The cupules of some extinct taxa have been suggested as the origin of the outer integument. A few angiosperms produce vascular tissue in the outer integument, the orientation of which suggests that the outer surface is morphologically abaxial. This suggests that cupules of the kind produced by the Caytoniales or Glossopteris may have evolved into the outer integument of angiosperms.Frohlich and Chase, 2007. After a dozen years of progress, the origin of angiosperms is still a great mystery. Nature 450:1184-1189 (20 December 2007) | ;
The integuments develop into the seed coat when the ovule matures after fertilization.
The integuments do not enclose the nucellus completely but retain an opening at the apex referred to as the . The micropyle opening allows the pollen (a male gametophyte) to enter the ovule for fertilization. In gymnosperms (e.g., conifers), the pollen is drawn into the ovule on a drop of fluid that exudes out of the micropyle, the so-called pollination drop mechanism. Subsequently, the micropyle closes. In angiosperms, only a pollen tube enters the micropyle. During germination, the seedling's radicle emerges through the micropyle.
Located opposite from the micropyle is the chalaza where the nucellus is joined to the integuments. Nutrients from the plant travel through the phloem of the vascular system to the funiculus and outer integument and from there and through the chalaza to the nucellus inside the ovule. In chalazogamous plants, the pollen tubes enter the ovule through the chalaza instead of the micropyle opening.
In gymnosperms, three of the four haploid spores produced in meiosis typically degenerate, leaving one surviving megaspore inside the nucellus. Among angiosperms, however, a wide range of variation exists in what happens next. The number (and position) of surviving megaspores, the total number of cell divisions, whether nuclear fusions occur, and the final number, position and ploidy of the cells or nuclei all vary. A common pattern of embryo sac development (the Polygonum type maturation pattern) includes a single functional megaspore followed by three rounds of mitosis. In some cases, however, two megaspores survive (for example, in Allium and Endymion). In some cases all four megaspores survive, for example in the Fritillaria type of development (illustrated by Lilium in the figure) there is no separation of the megaspores following meiosis, then the nuclei fuse to form a triploid nucleus and a haploid nucleus. The subsequent arrangement of cells is similar to the Polygonum pattern, but the ploidy of the nuclei is different.
After fertilization, the nucellus may develop into the perisperm that feeds the embryo. In some plants, the diploid tissue of the nucellus can give rise to the embryo within the seed through a mechanism of asexual reproduction called nucellar embryony.
In gymnosperms, the megagametophyte consists of around 2000 nuclei and forms archegonium, which produce egg cells for fertilization.
In flowering plants, the megagametophyte (also referred to as the embryo sac) is much smaller and typically consists of only seven cells and eight nuclei. This type of megagametophyte develops from the megaspore through three rounds of mitosis divisions. The cell closest to the micropyle opening of the integuments differentiates into the egg cell, with two synergid cells by its side that are involved in the production of signals that guide the pollen tube. Three antipodal cells form on the opposite (chalazal) end of the ovule and later degenerate. The large central cell of the embryo sac contains two polar nuclei.
In flowering plants, one sperm nucleus fuses with the egg cell to produce a zygote, the other fuses with the two polar nuclei of the central cell to give rise to the polyploid (typically triploid) endosperm. This double fertilization is unique to flowering plants, although in some other groups the second sperm cell does fuse with another cell in the megagametophyte to produce a second embryo. The plant stores nutrients such as starch, , and in the endosperm as a food source for the developing embryo and seedling, serving a similar function to the yolk of animal eggs. The endosperm is also called the albumen of the seed. The zygote then develops into a megasporophyte, which in turn produces one or more megasporangia. The ovule, with the developing megasporophyte, may be described as either tenuinucellate or crassinucellate. The former has either no cells or a single cell layer between the megasporophyte and the epidermal cells, while the latter has multiple cell layers between.
Embryos may be described by a number of terms including Linear (embryos have axile placentation and are longer than broad), or rudimentary (embryos are basal in which the embryo is tiny in relation to the endosperm). The Seed Biology Place:Structural seed types based on comparative internal morphology
|
|