Oviraptoridae is a group of bird-like, herbivorous and omnivorous . Oviraptorids are characterized by their toothless, parrot-like beaks and, in some cases, elaborate crests. They were generally small, measuring between one and two metres long in most cases, though some possible oviraptorids were enormous. Oviraptorids are currently known only from the Late Cretaceous of Asia, with the most well-known species and complete specimens found only in the Gobi Desert of Mongolia and northwestern China.
The Oviraptoridae itself is traditionally divided into two "subfamilies": the small, short-armed, and mainly crestless subfamily Heyuanniinae and the larger, crested, long-armed Oviraptorinae ( Oviraptor + Citipati). Some phylogenetic studies have shown that Oviraptor is the most primitive known oviraptorid, thus making Citipati a closer relative of the "ingeniines" and this traditional division into crestless and crested forms artificial.
Other possible oviraptorids include Nomingia gobiensis, Gigantoraptor erlianensis, Jiangxisaurus ganzhouensis and Shixinggia oblita. All four have been suggested to be oviraptorids, caenagnathids, or more primitive than either group.
In 2020, during their description of Oksoko avarsan, the cladogram recovered by Funston et al. is shown below. Because Oviraptor did not clade with Citipati and the other "oviraptorines", they named the latter's clade Citipatiinae, although they did not provide a formal definition. However, according to Mickey Mortimer, the clade can be considered valid because its describers explicitly name it as new, which satisfies ICZN Article 16.1.
Originally, oviraptorids were thought to be specialized egg raiders, based on a Mongolian find showing Oviraptor on top of a nest erroneously attributed to the dinosaur Protoceratops. However, discoveries in the 1990s, including Citipati specimens clearly brooding (rather than preying on) the same types of nests, and a Citipati embryo inside the same type of egg preserved in these nests, showed that the "specialized egg thief" idea was incorrect. Still, some scientists have suggested that oviraptorids may have fed on shelled food items like eggs or shellfish. However, animals specialized for eating shelled food typically have broad, crushing beaks or teeth. In contrast, the jaws of oviraptorids had thin, sharp edges probably supporting shearing beaks, ill-suited for cracking shells. Among other known animals, the beaks of oviraptorids most closely resemble those of herbivorous dicynodont , which are usually considered herbivorous.(This leads to the possibility that these animals are omnivorous).
Their beaks also share similarities with the beaks of herbivorous and .
Evidence of partial carnivory among some oviraptorines comes from a lizard skeleton preserved in the body cavity of the type specimen of Oviraptor and two hatchling Byronosaurus skulls found in a Citipati nest.Bever, G.S. and Norell, M.A. (2009). "The perinate skull of Byronosaurus (Troodontidae) with observations on the cranial ontogeny of paravian theropods." American Museum Novitates, 3657: 51 pp. Some scientists have also suggested that some oviraptorids (especially the small-handed, weak-clawed "ingeniines") fed mainly on plant material.
Oviraptorid eggs are shaped like elongated ovals (elongatoolithid) and resemble the eggs of ratite birds (such as ) in texture and shell structure. In the nest, eggs are typically found in pairs and arranged in concentric circles of up to three layers, with complete clutches consisting of as many of 22 eggs in some species.Varricchio, D.J. (2000). "Reproduction and Parenting," in Paul, G.S. (ed.). The Scientific American Book of Dinosaurs. New York: St. Martin's Press, pp. 279–293. The eggs of Citipati are the largest known definitive oviraptorid eggs, at 18 cm. In contrast, eggs associated with Oviraptor are only up to 14 cm long.
The first oviraptorid eggs (of the genus Oviraptor, which mean "Egg thief") were found in close proximity to the remains of the ceratopsian dinosaur Protoceratops and it was assumed that the oviraptorids were preying upon the eggs of the ceratopsians.Osborn, H.F. (1924). "Three new Theropoda, Protoceratops zone, central Mongolia." American Museum Novitates, 144: 12 pp., 8 figs.; (American Museum of Natural History) New York. (11.7.1924). It was not until 1993, when a Citipati embryo was discovered inside an egg of the type assigned to Protoceratops, that the error was corrected. Norell et al., who recognized the embryo as oviraptorid, assigned it to the genus Citipati. The egg containing the embryo was smaller than most known Citipati eggs at only 12 cm, though it was partially eroded and broken into three pieces, making an accurate estimate of its original size difficult. The embryo-bearing egg was otherwise identical to other oviraptorid eggs in shell structure and was found in an isolated nest, again arranged in a circular pattern.
An oviraptorosaurian specimen from China described in 2005 was found to have two unlaid eggs within the pelvic canal. This suggests that, unlike modern , oviraptorosaurs did not produce and lay many eggs at the same time. Rather, the eggs were produced within the reproductive organs in pairs, and laid two at a time, with the mother positioned in the center of the nest and rotating in a circle as each pair was laid. This behavior is supported by the fact that the eggs oval shape, with the more narrow end pointing backward from the birth canal, matching their orientation toward the center of the nest after being laid.
The presence of two shelled eggs within the birth canal shows that oviraptorosaurs were intermediate between the reproductive biology of crocodilians and modern birds. Like crocodilians, they had two . However, crocodilians produce multiple shelled eggs per oviduct at a time, whereas oviraptorosaurs, like birds, produced only one egg per oviduct at a time.
In 2017, paleontologists discovered colored pigments in some fossilized oviraptorid embryos of the egg-shell genus Macroolithus (which may represent eggs of Heyuannia). Examinations of eggs attributed to Heyuannia by Jasmina Wiemann and Tzu-Ruei Yang et al revealed the eggs preserved the blue-green pigment biliverdin and the reddish-brown pigment protoporphyrin, the same pigments found in many modern birds' eggshells. The eggs are thought to have been a blue-green color, because biliverdin is preserved in much greater abundance the photoporphyrin. In modern bird eggs, coloration can camouflage the eggs or help parents identify eggs, and it is correlated with more intensive parental care.
Metabolism
Feathers
Pathology
Paleoenvironment
See also
|
|