Oleocanthal is a phenylethanoid, or a type of natural phenols found in extra-virgin olive oil. It appears to be responsible for the burning sensation that occurs in the back of the throat when consuming such oil. Oleocanthal is a tyrosol ester and its chemical structure is related to oleuropein, also found in olive oil.
Oleocanthal is an activator of the TRPA1 ion channel, which is activated by ibuprofen. Oleocanthal is found to be responsible for the burning sensation when consuming extra-virgin olive oil.
Recently it has been demonstrated that oleocanthal shows potential as a therapeutic agent in the treatment of inflammatory degenerative joint diseases. Oleocanthal inhibits LPS-induced NO production in J774 macrophages, without affecting cell viability. Moreover, it inhibits MIP-1α and IL-6 mRNA expression, as well as protein synthesis, in both ATDC5 chondrocytes and J774 macrophages. Oleocanthal also inhibits IL-1β, TNF-α and GM-CSF protein synthesis from LPS-stimulated macrophages.
Cell apoptosis is tested by treating the lysosomal membrane with acridine orange. Acridine orange radiates a red fluorescent color at an increased concentration in a lysosome that is undamaged. Oleocanthal weakens the red fluorescent color indicating apoptosis; however, non-cancerous cells will not experience apoptosis. This is a result of lysosome membrane permeabilization promoting cancer cell death. Lysosomal membrane permeabilization is not activated by oleocanthal in non-cancerous cells.
Oleocanthal has also been shown in vitro to inhibit c-met, an important tyrosine kinase receptor which is responsible for proliferation of many cell types. The same study that found these results also showed that oleocanthal had no deleterious effects on healthy control cells over a span of 48 hours, the same amount of time that it took for inhibition of c-met in MB-231 breast cancer cells. Cells are forced into cell cycle arrest during G1 phase, effectively decreasing the viability of this highly invasive cell line.
|
|