Nuclear marine propulsion is propulsion of a ship or submarine with heat provided by a nuclear reactor. The power plant heats water to produce steam for a turbine used to turn the ship's propeller through a gearbox or through an electric generator and motor. Nuclear propulsion is used primarily within naval warships such as nuclear submarines and . A small number of experimental civil nuclear ships have been built.
Compared to oil- or coal-fuelled ships, nuclear propulsion offers the advantage of very long intervals of operation before refueling. All the fuel is contained within the nuclear reactor, so no cargo or supplies space is taken up by fuel, nor is space taken up by exhaust stacks or combustion air intakes. The low fuel cost is offset by high operating costs and investment in infrastructure, however, so nearly all nuclear-powered vessels are military.
The hot water from the reactor heats a separate water circuit in the steam generator. That water is converted to steam and passes through on its way to the steam turbine. Spent steam at low pressure runs through a condenser cooled by seawater and returns to liquid form. The water is pumped back to the steam generator and continues the cycle. Any water lost in the process can be made up by Desalination sea water added to the steam generator feed water.Viren Chopra, Rob Houston (ed), DK Eyewitness Books: Transportation, Penguin, 2012, page 60
In the turbine, the steam expands and reduces its pressure as it imparts energy to the rotating blades of the turbine. There may be many stages of rotating blades and fixed guide vanes. The output shaft of the turbine may be connected to a gearbox to reduce rotation speed, then a shaft connects to the vessel's propellers. In another form of drive system, the turbine turns an electrical generator, and the electric power produced is fed to one or more drive motors for the vessel's propellers. The Russian Navy, U.S. and Royal Navy navies rely on direct steam turbine propulsion, while French and Chinese ships use the turbine to generate electricity for propulsion (turbo-electric transmission).
Some nuclear submarines have a single reactor, but Russian submarines have two, and so had . Most American aircraft carriers are powered by two reactors, but had eight. The majority of marine Nuclear reactor are of the pressurized water type, although the U.S. and Soviet navies have designed warships powered with liquid metal cooled reactors.
While land-based reactors in nuclear power plants produce up to around 1600 megawatts of net electrical power (the nameplate capacity of the EPR), a typical marine propulsion reactor produces no more than a few hundred megawatts. Some small modular reactors (SMR) are similar to marine propulsion reactors in capacity and some design considerations and thus nuclear marine propulsion (whether civilian or military) is sometimes proposed as an additional market niche for SMRs. Unlike for land-based applications where hundreds of hectares can be occupied by installations like Bruce Nuclear Generating Station, at sea tight space limits dictate that a marine reactor must be physically small, so it must generate higher power per unit of space. This means its components are subject to greater stresses than those of a land-based reactor. Its mechanical systems must operate flawlessly under the adverse conditions encountered at sea, including vibration and the pitching and rolling of a ship operating in rough seas. Reactor shutdown mechanisms cannot rely on gravity to drop control rods into place as in a land-based reactor that always remains upright. Salt water corrosion is an additional problem that complicates maintenance.
As the core of a seagoing reactor is much smaller than a power reactor, the probability of a neutron intersecting with a fissionable nucleus before it escapes into the shielding is much lower. As such, the fuel is typically more highly enriched (i.e., contains a higher concentration of 235U vs. 238U) than that used in a land-based nuclear power plant, which increases the probability of fission to the level where a sustained reaction can occur. Some marine reactors run on relatively low-enriched uranium, which requires more frequent refueling. Others run on highly enriched uranium, varying from 20% 235U, to the over 96% 235U found in U.S. , in which the resulting smaller core is quieter in operation (a big advantage to a submarine). Using more-highly enriched fuel also increases the reactor's power density and extends the usable life of the nuclear fuel load, but is more expensive and a greater risk to nuclear proliferation than less-highly enriched fuel.
A marine nuclear propulsion plant must be designed to be highly reliable and self-sufficient, requiring minimal maintenance and repairs, which might have to be undertaken many thousands of miles from its home port. One of the technical difficulties in designing fuel elements for a seagoing nuclear reactor is the creation of fuel elements that will withstand a large amount of radiation damage. Fuel elements may crack over time and gas bubbles may form. The fuel used in marine reactors is a metal-zirconium alloy rather than the ceramic UO2 (uranium dioxide) often used in land-based reactors. Marine reactors are designed for long core life, enabled by the relatively high enrichment of the uranium and by incorporating a "burnable poison" in the fuel elements, which is slowly depleted as the fuel elements age and become less reactive. The gradual dissipation of the "nuclear poison" increases the reactivity of the core to compensate for the lessening reactivity of the aging fuel elements, thereby extending the usable life of the fuel. The compact Reactor vessel is provided with an internal neutron shield, which reduces the damage to the steel from constant neutron bombardment.
In 2010, Lloyd's Register was investigating the possibility of civilian nuclear marine propulsion and rewriting draft rules (see text under Merchant Ships)..
Under the direction of U.S. Navy Captain (later Admiral) Hyman G. Rickover,
The Soviet Union also developed nuclear submarines. The first types developed were the Project 627, NATO-designated with two water-cooled reactors, the first of which, K-3 Leninsky Komsomol, was underway under nuclear power in 1958.
Nuclear power revolutionized the submarine, finally making it a true "underwater" vessel, rather than a "submersible" craft, which could only stay underwater for limited periods. It gave the submarine the ability to operate submerged at high speeds, comparable to those of surface vessels, for unlimited periods, dependent only on the endurance of its crew. To demonstrate this was the first vessel to execute a submerged circumnavigation of the Earth (Operation Sandblast), doing so in 1960.
Nautilus, with a pressurized water reactor (PWR), led to the parallel development of other submarines like a unique liquid metal cooled (sodium) reactor in , or two reactors in Triton, and then the s, powered by single reactors, and a cruiser, , in 1961, powered by two reactors.
By 1962, the United States Navy had 26 operational nuclear submarines and another 30 under construction. Nuclear power had revolutionized the Navy. The United States shared its technology with the United Kingdom, while France, Soviet Union, and China development proceeded separately.
After the Skate-class vessels, U.S. submarines were powered by a series of standardized, single-reactor designs built by Westinghouse and General Electric. Rolls-Royce plc built similar units for Royal Navy submarines, eventually developing a modified version of their own, the PWR2.
The largest nuclear submarines ever built are the 26,500 tonne Russian . The smallest nuclear warships to date are the 2,700 tonne French attack submarines. The U.S. Navy operated an unarmed nuclear submarine, the NR-1 Deep Submergence Craft, between 1969 and 2008, which was not a combat vessel but was the smallest nuclear-powered submarine at 400 tons.
The French carrier is CATOBAR. The has 42,000 tonnes, is the flagship of the French Navy (Marine Nationale). The ship carries a complement of Dassault Rafale and E‑2C Hawkeye aircraft, EC725 Caracal and AS532 Cougar helicopters for combat search and rescue, as well as modern electronics and MBDA Aster missiles.
The last nuclear-powered cruisers the Americans would produce would be the four-ship . was commissioned in 1976, followed by in 1977, in 1978 and finally in 1980. Ultimately, all these ships proved to be too costly to maintain and they were all retired between 1993 and 1999.
SSV-33 carried only light defensive weapons. These were two AK-176 76 mm guns, four AK-630 30 mm guns, and four quadruple Igla missile mounts.
Civilian nuclear ships suffer from the costs of specialized infrastructure. The Savannah was expensive to operate since it was the only vessel using its specialized nuclear shore staff and servicing facility. A larger fleet could share fixed costs among more operating vessels, reducing operating costs.
Despite this, there is still interest in nuclear propulsion. In November 2010 British Maritime Technology and Lloyd's Register embarked upon a two-year study with U.S.-based Hyperion Power Generation (now Gen4 Energy), and the Greek ship operator Enterprises Shipping and Trading SA to investigate the practical maritime applications for small modular reactors. The research intended to produce a concept tanker-ship design, based on a 70 MWt reactor such as Hyperion's. In response to its members' interest in nuclear propulsion, Lloyd's Register has also re-written its 'rules' for nuclear ships, which concern the integration of a reactor certified by a land-based regulator with the rest of the ship. The overall rationale of the rule-making process assumes that in contrast to the current marine industry practice where the designer/builder typically demonstrates compliance with regulatory requirements, in the future the nuclear regulators will wish to ensure that it is the operator of the nuclear plant that demonstrates safety in operation, in addition to the safety through design and construction. Nuclear ships are currently the responsibility of their own countries, but none are involved in international trade. As a result of this work in 2014 two papers on commercial nuclear marine propulsion were published by Lloyd's Register and the other members of this consortium. These publications review past and recent work in the area of marine nuclear propulsion and describe a preliminary concept design study for a Suezmax tanker that is based on a conventional hull form with alternative arrangements for accommodating a 70 MWt nuclear propulsion plant delivering up to 23.5 MW shaft power at maximum continuous rating (average: 9.75 MW). The Gen4Energy power module is considered. This is a small fast-neutron reactor using lead–bismuth eutectic cooling and able to operate for ten full-power years before refueling, and in service last for a 25-year operational life of the vessel. They conclude that the concept is feasible, but further maturity of nuclear technology and the development and harmonisation of the regulatory framework would be necessary before the concept would be viable.
Nuclear propulsion has been proposed again on the wave of decarbonization of marine shipping, which accounts for 3–4% of global greenhouse gas emissions.
In December 2023, the Jiangnan Shipyard under the China State Shipbuilding Corporation officially released a design of a 24,000 TEU-class container ship — known as the KUN-24AP — at Marintec China 2023, a premier maritime industry exhibition held in Shanghai. The container ship is reported to be powered by a thorium-based molten salt reactor, making it a first thorium-powered container ship and, if completed, the largest nuclear-powered container ship in the world. For comparison, as of 2025 the largest container ships can carry 24,346 TEUs
The Soviet icebreaker Lenin was the world's first nuclear-powered surface vessel in 1959 and remained in service for 30 years (new reactors were fitted in 1970). It led to a series of larger icebreakers, the 23,500 Tonnage of six vessels, launched beginning in 1975. These vessels have two reactors and are used in deep Arctic waters. NS Arktika was the first surface vessel to reach the North Pole.
For use in shallow waters such as estuaries and rivers, shallow-draft, Taymyr-class icebreakers were built in Finland and then fitted with their single-reactor nuclear propulsion system in Russia. They were built to conform to international safety standards for nuclear vessels.
All nuclear-powered icebreakers have been commissioned by the Soviet Union or Russia.
|
|