Product Code Database
Example Keywords: arcade and -sony $38
   » » Wiki: Ninhydrin
Tag Wiki 'Ninhydrin'.
Tag

Ninhydrin (2,2-dihydroxyindane-1,3-dione) is an with the formula C6H4(CO)2C(OH)2. It is used to detect and . Upon reaction with these amines, ninhydrin gets converted into deep blue or purple derivatives, which are called Ruhemann's purple. Ninhydrin is most commonly used to detect in cases, as the terminal of residues in and sloughed off in fingerprints react with ninhydrin.

(2025). 9780471238966

Ninhydrin is a white solid that is soluble in and . Ninhydrin can be considered as the of indane-1,2,3-trione.


History
Ninhydrin was discovered in 1910 by the German-English chemist Siegfried Ruhemann (1859–1943). In the same year, Ruhemann observed ninhydrin's reaction with . In 1954, Swedish investigators Oden and von Hofsten proposed that ninhydrin could be used to develop latent fingerprints. U.S. Patent no. 2,715,571 (filed: 27 September 1954; issued: 16 August 1955).


Uses
Ninhydrin can be used in Kaiser test to monitor in solid phase peptide synthesis. The chain is linked via its to the solid support, with the extending off it. When that nitrogen is deprotected, a ninhydrin test yields blue. Amino-acid residues are attached with their N-terminus protected, so if the next residue has been successfully coupled onto the chain, the test gives a colorless or yellow result.

Ninhydrin is also used in qualitative analysis of proteins. Most of the amino acids, except , are and react with ninhydrin. Also, certain amino acid chains are degraded. Therefore, separate analysis is required for identifying such amino acids that either react differently or do not react with ninhydrin at all. The rest of the amino acids are then quantified colorimetrically after separation by .

A solution suspected of containing the ion can be tested by ninhydrin by dotting it onto a solid support (such as ); treatment with ninhydrin should result in a dramatic purple color if the solution contains this species. In the analysis of a chemical reaction by thin layer chromatography (TLC), the reagent can also be used (usually 0.2% solution in either n-butanol or in ethanol). It will detect, on the TLC plate, virtually all , and also, after vigorous heating, .

Upon reaction with ninhydrin, amino acids undergo . The released CO2 originates from the carboxyl carbon of the amino acid. This reaction has been used to release the carboxyl carbons of bone from ancient bones for stable in order to help reconstruct the palaeodiet of . Release of the carboxyl carbon (via ninhydrin) from amino acids recovered from soil that has been treated with a labeled substrate demonstrates assimilation of that substrate into microbial protein. This approach was successfully used to reveal that some ammonium oxidizing bacteria, also called nitrifying bacteria use as a carbon source in soil.


Forensics
A ninhydrin solution is commonly used by forensic investigators in the analysis of latent fingerprints on surfaces such as paper. The present in the minute sweat secretions that gather on the finger's unique ridges transfer to surfaces that are touched. Exposure of the surface to ninhydrin converts the amino acids into visibly colored products and thus reveals the print.Menzel, E.R. (1986) Manual of fingerprint development techniques. Home Office, Scientific Research and Development Branch, London. The test solutions suffer from poor long-term stability, especially if not kept cold.

To further enhance the ability of ninhydrin, a solution of 1,2-indandione and (IND-Zn) can be used prior to ninhydrin. This sequence leads to greater overall reaction of the amino acids, possibly by IND-Zn helping to release them from the surface for the subsequent ninhydrin reaction.


Reactivity
Ninhydrin exists in equilibrium with the triketone indane-1,2,3-trione, which reacts readily with nucleophiles (including water). Whereas for most carbonyl compounds, a carbonyl form is more stable than a product of water addition (hydrate), ninhydrin forms a stable hydrate of the central carbon because of the destabilizing effect of the adjacent carbonyl groups.

To generate the ninhydrin 2-(1,3-dioxoindan-2-yl)iminoindane-1,3-dione, the amine must condense to give a . The reaction of ninhydrin with secondary amines gives an iminium salt, which is also coloured, generally being yellow–orange.


Effects on health
Ninhydrin may cause allergic, IgE-mediated rhinitis and asthma. A case has been described in which a 41 year old forensic laboratory worker working with Ninhydrin developed rhinitis and respiratory difficulty. Her specific IgE levels were found almost doubled.


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs