A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 m). More generally, nanowires can be defined as structures that have a thickness or diameter constrained to tens of or less and an unconstrained length. At these scales, quantum mechanical effects are important—which coined the term "".
Many different types of nanowires exist, including superconducting (e.g. YBCO), metallic (e.g. nickel, platinum, gold, silver), semiconducting (e.g. Silicon nanowire, indium phosphide, gallium nitride) and insulating (e.g. Silicon dioxide, Titanium dioxide).
Molecular nanowires are composed of repeating molecular units either organic (e.g. DNA) or inorganic (e.g. Mo6S9− xI x).
A consequence of this quantum confinement in nanowires is that they exhibit discrete values of the electrical conductance. Such discrete values arise from a quantum mechanical constraint on the number electronic transport channels at the nanometer scale, and they are often approximately equal to integer multiples of the quantum of conductance:
This conductance is twice the reciprocal of the resistance unit called the von Klitzing constant, defined as and named for Klaus von Klitzing, the discoverer of the integer quantum Hall effect.
Examples of nanowires include inorganic molecular nanowires (Mo6S9− xI x, Li2Mo6Se6), which can have a diameter of 0.9 nm and be hundreds of micrometers long. Other important examples are based on semiconductors such as InP, Si, GaN, etc., dielectrics (e.g. SiO2,TiO2), or metals (e.g. Ni, Pt).
There are many applications where nanowires may become important in electronic, opto-electronic and nanoelectromechanical devices, as additives in advanced composites, for metallic interconnects in nanoscale quantum devices, as field-emitters and as leads for biomolecular nanosensors.
Nanowire production uses several common laboratory techniques, including suspension, electrochemical deposition, vapor deposition, and VLS growth. Ion track technology enables growing homogeneous and segmented nanowires down to 8 nm diameter. As nanowire oxidation rate is controlled by diameter, thermal oxidation steps are often applied to tune their morphology.
VLS synthesis requires a catalyst. For nanowires, the best catalysts are liquid metal (such as gold) , which can either be self-assembled from a thin film by dewetting, or purchased in colloidal form and deposited on a substrate.
The source enters these nanoclusters and begins to saturate them. On reaching supersaturation, the source solidifies and grows outward from the nanocluster. Simply turning off the source can adjust the final length of the nanowire. Switching sources while still in the growth phase can create compound nanowires with super-lattices of alternating materials. For example, a method termed ENGRAVE (Encoded Nanowire GRowth and Appearance through VLS and Etching) developed by the Cahoon Lab at UNC-Chapel Hill allows for nanometer-scale morphological control via rapid in situ dopant modulation.
A single-step vapour phase reaction at elevated temperature synthesises inorganic nanowires such as Mo6S9− xI x. From another point of view, such nanowires are cluster .
Similar to VLS synthesis, VSS (vapor-solid-solid) synthesis of nanowires (NWs) proceeds through thermolytic decomposition of a silicon precursor (typically phenylsilane). Unlike VLS, the catalytic seed remains in solid state when subjected to high temperature annealing of the substrate. This such type of synthesis is widely used to synthesise metal silicide/germanide nanowires through VSS alloying between a copper substrate and a silicon/germanium precursor.
The supercritical fluid-liquid-solid growth method can be used to synthesize semiconductor nanowires, e.g., Si and Ge. By using metal nanocrystals as seeds, Si and Ge organometallic precursors are fed into a reactor filled with a supercritical organic solvent, such as toluene. Thermolysis results in degradation of the precursor, allowing release of Si or Ge, and dissolution into the metal nanocrystals. As more of the semiconductor solute is added from the supercritical phase (due to a concentration gradient), a solid crystallite precipitates, and a nanowire grows uniaxially from the nanocrystal seed.
The simplest methods to obtain metal oxide nanowires use ordinary heating of the metals, e.g. metal wire heated with battery, by Joule heating in air can be easily done at home. Spontaneous nanowire formation by non-catalytic methods were explained by the dislocations present in specific directions or the growth anisotropy of various crystal. Nanowires can grow by screw dislocations or Twin boundary were demonstrated. The picture on the right shows a single atomic layer growth on the tip of CuO nanowire, observed by in situ TEM microscopy during the non-catalytic synthesis of nanowire.
Atomic-scale nanowires can also form completely self-organised without need for defects. For example, rare-earth silicide (RESi2) nanowires of few nm width and height and several 100 nm length form on silicon(Miller index) substrates which are covered with a sub-monolayer of a rare earth metal and subsequently annealed. The lateral dimensions of the nanowires confine the electrons in such a way that the system resembles a (quasi-)one-dimensional metal. Metallic RESi2 nanowires form on silicon( Miller index) as well. This system permits tuning the dimensionality between two-dimensional and one-dimensional by the coverage and the tilt angle of the substrate.
Nanowires also show other peculiar electrical properties due to their size. Unlike single wall carbon nanotubes, whose motion of electrons can fall under the regime of ballistic transport (meaning the electrons can travel freely from one electrode to the other), nanowire conductivity is strongly influenced by edge effects. The edge effects come from atoms that lay at the nanowire surface and are not fully bonded to neighboring atoms like the atoms within the bulk of the nanowire. The unbonded atoms are often a source of defects within the nanowire, and may cause the nanowire to conduct electricity more poorly than the bulk material. As a nanowire shrinks in size, the surface atoms become more numerous compared to the atoms within the nanowire, and edge effects become more important.
The conductance in a nanowire is described as the sum of the transport by separate channels, each having a different electronic wavefunction normal to the wire. The thinner the wire is, the smaller the number of channels available to the transport of electrons. As a result, wires that are only one or a few atoms wide exhibit quantization of the conductance: i.e. the conductance can assume only discrete values that are multiples of the conductance quantum (where e is the elementary charge and h is the Planck constant) (see also Quantum Hall effect). This quantization has been observed by measuring the conductance of a nanowire suspended between two electrodes while pulling it progressively longer: as its diameter reduces, its conductivity decreases in a stepwise fashion and the plateaus correspond approximately to multiples of G0.
The quantization of conductivity is more pronounced in semiconductors like Si or GaAs than in metals, because of their lower electron density and lower effective mass. It can be observed in 25 nm wide silicon fins, and results in increased threshold voltage. In practical terms, this means that a MOSFET with such nanoscale silicon fins, when used in digital applications, will need a higher gate (control) voltage to switch the transistor on.
For nanowires with diameters less than 10 nm, existing welding techniques, which require precise control of the heating mechanism and which may introduce the possibility of damage, will not be practical. Single-crystalline ultrathin gold nanowires with diameters ≈ 3–10 nm can be "cold-welded" together within seconds by mechanical contact alone, and under remarkably low applied pressures (unlike macro- and micro-scale cold welding process). High-resolution transmission electron microscopy and in situ measurements reveal that the welds are nearly perfect, with the same crystal orientation, strength and electrical conductivity as the rest of the nanowire. The high quality of the welds is attributed to the nanoscale sample dimensions, oriented-attachment mechanisms and mechanically assisted fast surface diffusion. Nanowire welds were also demonstrated between gold and silver, and silver nanowires (with diameters ≈ 5–15 nm) at near room temperature, indicating that this technique may be generally applicable for ultrathin metallic nanowires. Combined with other nano- and microfabrication technologies, cold welding is anticipated to have potential applications in the future bottom-up assembly of metallic one-dimensional nanostructures.
Experimentally, gold nanowires have been shown to have a Young's modulus which is effectively diameter independent. Similarly, Nanoindentation was applied to study the modulus of silver nanowires, and again the modulus was found to be 88 GPa, very similar to the modulus of bulk Silver (85 GPa) These works demonstrated that the analytically determined modulus dependence seems to be suppressed in nanowire samples where the crystalline structure highly resembles that of the bulk system.
In contrast, Si solid nanowires have been studied, and shown to have a decreasing modulus with diameter The authors of that work report a Si modulus which is half that of the bulk value, and they suggest that the density of point defects, and or loss of chemical stoichiometry may account for this difference.
Due to their one-dimensional structure with unusual optical properties, the nanowire are of interest for photovoltaic devices. Compared with its bulk counterparts, the nanowire solar cells are less sensitive to impurities due to bulk recombination, and thus silicon wafers with lower purity can be used to achieve acceptable efficiency, leading to the reduction on material consumption.
After p-n junctions were built with nanowires, the next logical step was to build logic gates. Connecting several p-n junctions creates the basis of all logic circuits: the AND gate, OR gate, and NOT gate gates have all been built from semiconductor nanowire crossings.
have been produced from undoped silicon nanowires. This avoids the problem of how to achieve precision doping of complementary nanocircuits, which is unsolved. They were able to control the Schottky barrier to achieve low-resistance contacts by placing a silicide layer in the metal-silicon interface.
It is possible that semiconductor nanowire crossings will be important to the future of digital computing. Though there are other uses for nanowires beyond these, the only ones that actually take advantage of physics in the nanometer regime are electronic.
In addition, nanowires are also being studied for use as photon ballistic waveguides as interconnects in quantum dot/quantum effect well photon logic arrays. Photons travel inside the tube, electrons travel on the outside shell.
When two nanowires acting as photon waveguides cross each other the juncture acts as a quantum dot.
Conducting nanowires offer the possibility of connecting molecular-scale entities in a molecular computer. Dispersions of conducting nanowires in different polymers are being investigated for use as transparent electrodes for flexible flat-screen displays.
Because of their high Young's moduli, their use in mechanically enhancing composites is being investigated. Because nanowires appear in bundles, they may be used as tribological additives to improve friction characteristics and reliability of electronic transducers and actuators.
Because of their high aspect ratio, nanowires are also suited to dielectrophoretic manipulation, which offers a low-cost, bottom-up approach to integrating suspended dielectric metal oxide nanowires in electronic devices such as UV, water vapor, and ethanol sensors.
Due to their large surface-to-volume ratio, physico-chemical reactions are facilitated on the surface of nanowires.
This change in the surface potential influences the Chem-FET device exactly as a 'gate' voltage does, leading to a detectable and measurable change in the device conduction. When these devices are fabricated using semiconductor nanowires as the transistor element the binding of a chemical or biological species to the surface of the sensor can lead to the depletion or accumulation of charge carriers in the "bulk" of the nanometer diameter nanowire i.e. (small cross section available for conduction channels). Moreover, the wire, which serves as a tunable conducting channel, is in close contact with the sensing environment of the target, leading to a short response time, along with orders of magnitude increase in the sensitivity of the device as a result of the huge S/V ratio of the nanowires.
While several inorganic semiconducting materials such as Si, Ge, and metal oxides (e.g. In2O3, SnO2, ZnO, etc.) have been used for the preparation of nanowires, Si is usually the material of choice when fabricating nanowire FET-based chemo/biosensors.
Several examples of the use of Silicon Nanowire(SiNW) sensing devices include the ultra sensitive, real-time sensing of biomarker proteins for cancer, detection of single virus particles, and the detection of nitro-aromatic explosive materials such as 2,4,6-tri-nitrotoluene (TNT) in sensitives superior to these of canines. Silicon nanowires could also be used in their twisted form, as electromechanical devices, to measure intermolecular forces with great precision.
The main advantages of this method include a significant reduction of sample preparation time (quick welding and cutting of nanowire at low beam current), and minimization of stress-induced bending, Pt contamination, and ion beam damage. This technique is particularly suitable for in situ electron microscopy sample preparation.
|
|