A mycorrhiza (; , mycorrhiza, or mycorrhizas) is a symbiosis association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, the plant root system and its surroundings. Mycorrhizae play important roles in plant nutrition, soil life, and soil chemistry.
In a mycorrhizal association, the fungus colonizes the host plant's root tissues, either as in arbuscular mycorrhizal fungi, or as in ectomycorrhizal fungi. The association is normally mutualistic. In particular species, or in particular circumstances, mycorrhizae may have a Parasitism association with host plants.
Mycorrhizal relationships were likely crucial in terrestrial plant colonization some 450-500 million years ago, suggesting that mycorrhizal relationships are coincident with the evolution of terrestrial flora. Mycorrhizal relationships have independently evolved from saprotrophic fungi a number of times, and in effect mycorrhizae have developed multiple modes of exchange between root cells and hyphae. There are three major forms of mycorrhizal relationships which have evolved independently of one another, the oldest being arbuscular mycorrhizae, followed by ectomycorrhizal relationships, and most recently ericoid mycorrhizal relationships.
Arbuscular Mycorrhizae
Arbuscular mycorrhizae are the oldest and most frequent form of mycorrhizal relationship. Arbuscular mycorrhizae establish nutrient exchange through penetrating the root cortical cells of the host plant, making the relationship endomycorrhizal (inside the cell) as opposed to the later developed ectomycorrhizae (external nutrient exchange). Arbuscular mycorrhizae leave behind arbuscules, tree-like structures formed through hyphal penetration into the cell. Arbuscular mycorrhizae take on most angiosperms, some gymnosperms, pteridophytes, and nonvascular plants as plant hosts.
Arbuscular mycorrhizas likely evolved alongside terrestrial plants approximately 450-500 million years ago when plants first began to colonize land. Some scholars suggest arbuscular mycorrhizal relationships originated between fungus-like protists and algae during this time. Paramycorrhizae, mycorrhiza-like structures, have been observed in the Rhynie Chert, a 407 million-year-old piece of fossilized earth found in Scotland, setting a lower bound for mycorrhizal relationships. The earliest root-confined arbuscular mycorrhizae observed come from a fossil where hyphae are seen colonizing the rootlet of an arborescent clubmoss, forming arbuscules.
There is a strong consensus among paleomycologists that mycorrhizal fungi served as a primitive root system for early terrestrial plants. This is because, prior to plant colonization of land, soils were nutrient sparse and plants had yet to develop root systems. Without complex root systems, early terrestrial plants would have been incapable of absorbing recalcitrant ions from mineral substrates, such as phosphate, a key nutrient for plant growth. There are a number of indicators that all land plants evolved from arbuscular mycorrhizal symbiosis. One strong indicator is that arbuscular mycorrhizae have been observed in the seedling stage of otherwise ectomycorrhizal partners, suggesting that arbuscular mycorrhizae may be able to infect almost any land plant given proper circumstances. Arbuscular mycorrhizal symbiosis occurs between plants and fungi in the division glomeromycota, which has been observed in almost every seed plant taxonomic division, or around 67% of species. As arbuscular mycorrhizae show minimal host plant specificity, and described mycorrhizae species are likely capable of forming relationships with most host plant taxa, this also suggests that terrestrial plants and arbuscular mycorrhizae evolved with one another.
Ectomycorrhizae
Ectomycorrhizae are mycorrhizal relationships formed without the hyphae of the fungi penetrating the root cells of the host plant, instead forming a sheath around the root of the symbiont for nutrient exchange. The earliest confirmed ectomycorrhizal fossil dates back to the eocene approximately 48 million years ago, However it’s believed that the first ectomycorrhizal relationships evolved in the stem group Pinaceae around the radiation of the Pinaceae crown group in the mid Jurassic, 175 million or so years ago.
Ectomycorrhizal relationships have evolved a number of times, in both plants and fungi. In angiosperms, it is believed that ectomycorrhizal partnerships have evolved independently at least 18 times, and in fungi 78-82 times. The main evolutionary driver for ectomycorrhizae is switching of nutritional modes from saprotrophs. Phylogenomic analysis of various ectomycorrhizal fungal genomes has confirmed the convergent evolution of ectomycorrhizal fungi from white and brown-rot fungi, as well as from soil saprotrophs – Ectomycorrhizal fungi likely evolved convergently from saprotrophic origins several times. Some lineages of ectomycorrhizae have likely evolved from endophytic ancestors, fungi that live within plants without damaging them, while others such as Amanitaceae evolved from saprotrophs. Some ectomycorrhizal fungi have gone through apparent evolutionary reversal back into saprotrophic ecology. This is possible because ectomycorrhizal fungi retain enzymes for breaking down lignin. Most ectomycorrhizal relationships are formed between basidiomycetes or ascomycetes and woody trees or shrubs.
Ericoid Mycorrhizae
Ericoid mycorrhizae evolved from a monophyletic origin around 140 million years ago. The earliest ericoid mycorrhizae evolved from saprotrophic ascomycetes. Ericoid mycorrhizae are only present in the Ericales order for plant hosts, and the Leotiales order of fungi. This specialization suggests that ericoid mycorrhizal partners evolved in parallel with one another in response to environmental change, rather than through reciprocal species-to-species level selection.
Ericoid mycorrhizal relationships are found in extremely nutrient poor soils in the northern and southern hemispheres. These environments of low mineral nutrient availability have led to native plants developing sclerophylly, where plants become high in lignin and low in phosphorus and nitrogen. As a result, decaying plant matter in these areas has an abnormally high carbon to nitrogen ratio, making it resistant to microbial decay. Ericoid mycorrhizae have apparently evolved to conserve minerals in nutrient deficient sclerophyllous litter by directly cycling these nutrients throughout the mycorrhiza system. Ericoid mycorrhizae also retain saprotrophic abilities, allowing them to extract nitrogen and phosphorus from unmineralized organic material, and resist negative outcomes from high concentrations of toxic cations in the acidic soil environment.
Ectomycorrhizas, or EcM, are symbiotic associations between the roots of around 10% of plant families, mostly woody plants including the Betulaceae, Dipterocarpaceae, Myrtaceae, Fagaceae, Pinaceae, and Rosaceae families, orchids, and fungi belonging to the Basidiomycota, Ascomycota, and Zygomycota. Ectomycorrhizae associate with relatively few plant species, only about 2% of plant species on Earth, but the species they associate with are mostly trees and woody plants that are highly dominant in their ecosystems, meaning plants in ectomycorrhizal relationships make up a large proportion of plant biomass. Some EcM fungi, such as many Leccinum and Suillus, are symbiotic with only one particular genus of plant, while other fungi, such as the Amanita, are generalists that form mycorrhizas with many different plants. An individual tree may have 15 or more different fungal EcM partners at one time. While the diversity of plants involved in EcM is low, the diversity of fungi involved in EcM is high. Thousands of ectomycorrhizal fungal species exist, hosted in over 200 genera. A recent study has conservatively estimated global ectomycorrhizal fungal species richness at approximately 7750 species, although, on the basis of estimates of knowns and unknowns in macromycete diversity, a final estimate of ECM species richness would probably be between 20,000 and 25,000. Ectomycorrhizal fungi evolved independently from saprotrophic ancestors many times in the group's history.
Nutrients can be shown to move between different plants through the fungal network. Carbon has been shown to move from paper birch seedlings into adjacent Douglas-fir seedlings, although not conclusively through a common mycorrhizal network, thereby promoting succession in . The ectomycorrhizal fungus Laccaria bicolor has been found to lure and kill to obtain nitrogen, some of which may then be transferred to the mycorrhizal host plant. In a study by Klironomos and Hart, Eastern White Pine inoculated with L. bicolor was able to derive up to 25% of its nitrogen from springtails. Fungi kill insects and feed host plants BNET.com When compared with non-mycorrhizal fine roots, ectomycorrhizae may contain very high concentrations of trace elements, including toxic metals (cadmium, silver) or chlorine.
The first genomic sequence for a representative of symbiotic fungi, the ectomycorrhizal basidiomycete L. bicolor, was published in 2008. An expansion of several multigene families occurred in this fungus, suggesting that adaptation to symbiosis proceeded by gene duplication. Within lineage-specific genes those coding for symbiosis-regulated secreted proteins showed an up-regulated expression in ectomycorrhizal root tips suggesting a role in the partner communication. L. bicolor is lacking enzymes involved in the degradation of plant cell wall components (cellulose, hemicellulose, pectins and pectates), preventing the symbiont from degrading host cells during the root colonisation. By contrast, L. bicolor possesses expanded multigene families associated with hydrolysis of bacterial and microfauna polysaccharides and proteins. This genome analysis revealed the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. Since then, the genomes of many other ectomycorrhizal fungal species have been sequenced further expanding the study of gene families and evolution in these organisms.
Contrasting with the pattern seen in ectomycorrhizae, the species diversity of AMFs is very low, but the diversity of plant hosts is very high; an estimated 78% of all plant species associate with AMFs. Arbuscular mycorrhizas are formed only by fungi in the division Glomeromycota. Fossil evidence and DNA sequence analysis suggest that this mutualism appeared Devonian, when the first plants were colonizing land. Arbuscular mycorrhizas are found in 85% of all plant families, and occur in many crop species. The hyphae of arbuscular mycorrhizal fungi produce the glycoprotein glomalin, which may be one of the major stores of carbon in the soil. Arbuscular mycorrhizal fungi have (possibly) been asexual for many millions of years and, unusually, individuals can contain many genetically different nuclei (a phenomenon called heterokaryosis).
Plants that participate in these symbioses have specialized roots with no root hairs, which are covered with a layer of epidermal cells that the fungus penetrates into and completely occupies. The fungi have a simple intraradical (growth in cells) phase, consisting of dense coils of hyphae in the outermost layer of root cells. There is no periradical phase and the extraradical phase consists of sparse hyphae that don't extend very far into the surrounding soil. They might form sporocarps (probably in the form of small cups), but their reproductive biology is poorly understood.
Plants participating in ericoid mycorrhizal symbioses are found in acidic, nutrient-poor conditions. Whereas AMFs have lost their saprotrophic capabilities, and EcM fungi have significant variation in their ability to produce enzymes needed for a saprotrophic lifestyle, fungi involved in ErMs have fully retained the ability to decompose plant material for sustenance. Some ericoid mycorrhizal fungi have actually expanded their repertoire of enzymes for breaking down organic matter. They can extract nitrogen from cellulose, hemicellulose, lignin, pectin, and chitin. This would increase the benefit they can provide to their plant symbiotic partners.
Recent research into ectomycorrhizal plants in boreal forests has indicated that mycorrhizal fungi and plants have a relationship that may be more complex than simply mutualistic. This relationship was noted when mycorrhizal fungi were unexpectedly found to be hoarding nitrogen from plant roots in times of nitrogen scarcity. Researchers argue that some mycorrhizae distribute nutrients based upon the environment with surrounding plants and other mycorrhizae. They go on to explain how this updated model could explain why mycorrhizae do not alleviate plant nitrogen limitation, and why plants can switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines. It has also been suggested that evolutionary and phylogenetic relationships can explain much more variation in the strength of mycorrhizal mutualisms than ecological factors.
Experiments with arbuscular mycorrhizal fungi have identified numerous chemical compounds to be involved in the "chemical dialog" that occurs between the prospective symbionts before symbiosis is begun. In plants, almost all plant hormones play a role in initiating or regulating AMF symbiosis, and other chemical compounds are also suspected to have a signaling function. While the signals emitted by the fungi are less understood, it has been shown that chitinaceous molecules known as Myc factors are essential for the formation of arbuscular mycorrhizae. Signals from plants are detected by LysM-containing receptor-like kinases, or LysM-RLKs. AMF genomes also code for potentially hundreds of effector proteins, of which only a few have a proven effect on mycorrhizal symbiosis, but many others likely have a function in communication with plant hosts as well.
Many factors are involved in the initiation of mycorrhizal symbiosis, but particularly influential is the plant's need for phosphorus. Experiments involving Oryza sativa plants with a mutation disabling their ability to detect P starvation show that arbuscular mycorrhizal fungi detection, recruitment and colonization is prompted when the plant detects that it is starved of phosphorus. Nitrogen starvation also plays a role in initiating AMF symbiosis.
Unaided plant roots may be unable to take up that are chemically or physically immobilised; examples include phosphate ions and such as iron. One form of such immobilization occurs in soil with high clay content, or soils with a strongly basic pH. The mycelium of the mycorrhizal fungus can, however, access many such nutrient sources, and make them available to the plants they colonize. Thus, many plants are able to obtain phosphate without using soil as a source. Another form of immobilisation is when nutrients are locked up in organic matter that is slow to decay, such as wood, and some mycorrhizal fungi act directly as decay organisms, mobilising the nutrients and passing some onto the host plants; for example, in some dystrophic forests, large amounts of phosphate and other nutrients are taken up by mycorrhizal acting directly on leaf litter, bypassing the need for soil uptake. Inga alley cropping, an agroforestry technique proposed as an alternative to slash and burn rainforest destruction, relies upon mycorrhiza within the root system of species of Inga to prevent the rain from washing phosphorus out of the soil.
In some more complex relationships, mycorrhizal fungi do not just collect immobilised soil nutrients, but connect individual plants together by mycorrhizal networks that transport water, carbon, and other nutrients directly from plant to plant through underground hyphal networks.
Suillus tomentosus, a basidiomycete fungus, produces specialized structures known as tuberculate ectomycorrhizae with its plant host lodgepole pine ( Pinus contorta var. latifolia). These structures have been shown to host nitrogen fixing bacteria which contribute a significant amount of nitrogen and allow the pines to colonize nutrient-poor sites.
Associations of fungi with the roots of plants have been known since at least the mid-19th century. However, early observers simply recorded the fact without investigating the relationships between the two organisms. This symbiosis was studied and described by Franciszek Kamieński in 1879–1882.. From p. 129: "Der ganze Körper ist also weder Baumwurzel noch Pilz allein, sondern ähnlich wie der Thallus der Flechten, eine Vereinigung zweier verschiedener Wesen zu einem einheitlichen morphologischen Organ, welches vielleicht passend als Pilzwurzel , Mycorhiza bezeichnet werden kann." (The whole body is thus neither tree root nor fungus alone, but similar to the thallus of lichens, a union of two different organisms into a single morphological organ, which can be aptly designated as a "fungus root", a mycorrhiza.)
A company in Israel, Groundwork BioAg, has discovered a method of using mycorrhizal fungi to increase agricultural crops while sequestering greenhouse gases and eliminating CO2 from the atmosphere. he Israeli Company That Uses Fungus to Tackle the Climate and Soil Crises, Haaretz
Arbutoid mycorrhiza
Arbuscular mycorrhiza
Mucoromycotina fine root endophytes
Ericoid mycorrhiza
Orchid mycorrhiza
Monotropoid mycorrhiza
Function
Formation
Mechanisms
Sugar-water/mineral exchange
Disease, drought and salinity resistance and its correlation to mycorrhizae
Resistance to insects
Colonization of barren soil
Resistance to toxicity
Occurrence of mycorrhizal associations
Climate change
Conservation and mapping
See also
External links
|
|