Muscovite (also known as common mica, isinglass, or potash mica Encyclopædia Britannica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(Alsilicon3oxygen10)(fluorine,Ohydrogen)2, or (KF)2(aluminate)3(silicate)6(hydrate). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite have been found in Nellore, India.
Muscovite has a Mohs hardness of 2–2.25 parallel to the [Miller face]], 4 perpendicular to the 001 and a specific gravity of 2.76–3. It can be colorless or tinted through grays, violet or red, and can be transparent or translucent. It is anisotropic and has high birefringence. Its crystal system is monoclinic. The green, chromium-rich variety is called fuchsite; mariposite is also a chromium-rich type of muscovite.
Muscovite is the most common mica, found in , , , and , and as a contact metamorphic rock or as a secondary mineral resulting from the alteration of topaz, feldspar, kyanite, etc. It is characteristic of peraluminous rock, in which the content of aluminum is relatively high.Blatt, Harvey and Robert J. Tracy, Petrology, Freeman, 2nd ed., 1995, p. 516 In pegmatites, it is often found in immense sheets that are commercially valuable. Muscovite is in demand for the manufacture of fireproofing and insulating materials and to some extent as a lubricant.
Each layer is composed of three sheets. The outer sheets ('T' or tetrahedral sheets) consist of silicon-oxygen tetrahedra and aluminium-oxygen tetrahedra, with three of the oxygen anions of each tetrahedron shared with neighboring tetrahedra to form a hexagonal sheet. The fourth oxygen anion in each tetrahedral sheet is called an apical oxygen anion. There are three silicon cations for each aluminium cation but the arrangement of aluminium and silicon cations is largely disordered.
The middle octahedral ( O) sheet consists of aluminium cations that are each surrounded by six oxygen or hydroxide anions forming an octahedron, with the octahedrons sharing anions to form a hexagonal sheet similar to the tetrahedral sheets. The apical oxygen anions of the outer T sheets face inwards and are shared by the octahedral sheet, binding the sheets firmly together. The relatively strong binding between oxygen anions and aluminium and silicon cations within a layer, compared with the weaker binding of potassium cations between layers, gives muscovite its perfect basal cleavage.
In muscovite, alternate layers are slightly offset from each other, so that the structure repeats every two layers. This is called the 1 M polytype of the general mica structure.
The formula for muscovite is typically given as , but it is common for small amounts of other elements to substitute for the main constituents. such as sodium, rubidium, and caesium substitute for potassium; magnesium, iron, lithium, chromium, titanium, or vanadium can substitute for aluminium in the octahedral sheet; fluorine or chlorine can substitute for hydroxide; and the ratio of aluminium to silicon in the tetrahedral sheets can change to maintain charge balance where necessary (as when magnesium cations, with a charge of +2, substitute for aluminium ions, with a charge of +3).
Up to 10% of the potassium may be replaced by sodium, and up to 20% of the hydroxide by fluorine. Chlorine rarely replaces more than 1% of the hydroxide. Muscovite in which the mole fraction of silicon is greater than aluminium, and magnesium or iron replaces some of the aluminium to maintain charge balance, is called phengite.
Chromium-rich and vanadium-rich muscovite are known respectively as fuchsite and roscoelite.
Uses
Gallery
External links
|
|