Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone and shale. Most of the particles of which the stone is composed are less than and are too small to study readily in the field. At first sight, the rock types appear quite similar; however, there are important differences in composition and nomenclature.
There has been a great deal of disagreement involving the classification of mudrocks. A few important hurdles to their classification include the following:
Mudrocks make up 50% of the sedimentary rocks in the geologic record and are easily the most widespread deposits on Earth. Fine sediment is the most abundant product of erosion, and these sediments contribute to the overall omnipresence of mudrocks.
From the beginning of civilization, when pottery and mudbricks were made by hand, to now, mudrocks have been important. The first book on mudrocks, Geologie des Argils by Millot, was not published until 1964; however, scientists, engineers, and oil producers have understood the significance of mudrocks since the discovery of the Burgess Shale and the relatedness of mudrocks and oil. Literature on this omnipresent rock-type has been increasing in recent years, and technology continues to allow for better analysis.
Mudrocks contain mostly clay minerals, and quartz and . They can also contain the following particles at less than 63 micrometres: calcite, dolomite, siderite, pyrite, marcasite, heavy minerals, and even organic carbon.
There are various synonyms for fine-grained siliciclastic rocks containing fifty percent or more of its constituents less than 1/256 of a millimeter. , , , and are common qualifiers, or umbrella terms; however, the term mudrock has increasingly become the terminology of choice by sedimentary geologists and authors.
The term "mudrock" allows for further subdivisions of siltstone, claystone, mudstone, argilite and shale. For example, a siltstone would be made of more than 50-percent grains that equate to 1/16 - 1/256 of a millimeter. "Shale" denotes fissility, which implies an ability to part easily or break parallel to stratification. Siltstone, mudstone, and claystone implies lithified, or hardened, detritus without fissility.
Overall, "mudrocks" may be the most useful qualifying term, because it allows for rocks to be divided by its greatest portion of contributing grains and their respective grain size, whether silt, clay, or mud.
4 μm |
64 μm |
64 μm |
64 μm |
na |
For a size comparison, a clay-sized particle is 1/1000 the size of a sand grain. This means a clay particle will travel 1000 times further at constant water velocity, thus requiring quieter conditions for settlement.
The formation of clay is well understood, and can come from soil, volcanic ash, and glaciation. Ancient mudrocks are another source, because they weather and disintegrate easily. Feldspar, amphiboles, pyroxenes, and volcanic glass are the principle donors of clay minerals.
The terminology of "mudstone" is not to be confused with the Dunham classification scheme for limestones. In Dunham's classification, a mudstone is any limestone containing less than ten percent carbonate grains. Note, a siliciclastic mudstone does not deal with carbonate grains. Friedman, Sanders, and Kopaska-Merkel (1992) suggest the use of "lime mudstone" to avoid confusion with siliciclastic rocks.
One of the highest proportions of silt found on Earth is in the Himalayas, where phyllites are exposed to rainfall of up to five to ten meters (16 to 33 feet) a year. Quartz and feldspar are the biggest contributors to the silt realm, and silt tends to be non-cohesive, non-plastic, but can liquefy easily.
There is a simple test that can be done in the field to determine whether a rock is a siltstone or not, and that is to put the rock to one's teeth. If the rock feels "gritty" against one's teeth, then it is a siltstone.
There are many varieties of shale, including calcareous and organic-rich; however, black shale, or organic-rich shale, deserves further evaluation. In order for a shale to be a black shale, it must contain more than one percent organic carbon. A good source rock for hydrocarbons can contain up to twenty percent organic carbon. Generally, black shale receives its influx of carbon from algae, which decays and forms an ooze known as sapropel. When this ooze is cooked at desired pressure, three to six kilometers (1.8 - 3.7 miles) depth, and temperature, , it will form kerogen. Kerogen can be heated, and yield up to of natural oil and gas product per ton of rock.
Slate is often used for roofing, flooring, or old-fashioned stone walls. It has an attractive appearance, and its ideal cleavage and smooth texture are desirable.
Warm, wet climates are best for weathering rocks, and there is more mud on ocean shelves off tropical coasts than on temperate or polar shelves. The Amazon basin, for example, has the third largest sediment load on Earth, with rainfall providing clay, silt, and mud from the Andes in Peru, Ecuador, and Bolivia.
Rivers, waves, and longshore currents segregate mud, silt, and clay from sand and gravel due to fall velocity. Longer rivers, with low gradients and large watersheds, have the best carrying capacity for mud. The Mississippi River, a good example of long, low gradient river with a large amount of water, will carry mud from its northernmost sections, and deposit the material in its mud-dominated delta.
In order for an alluvial valley to exist there must be a highly elevated zone, usually uplifted by active tectonic movement, and a lower zone, which acts as a conduit for water and sediment to the ocean.
The Northern Hemisphere contains 90-percent of the world's lakes larger than , and glaciers created many of those lakes. Lake deposits formed by glaciation, including deep glacial scouring, are abundant.
Ancient lakes owe their abundance of mudrocks to their long lives and thick deposits. These deposits were susceptible to changes in oxygen and rainfall, and offer a robust account of paleoclimate consistency.
Low energy deltas, which deposit a great deal of mud, are located in lakes, gulfs, seas, and small oceans, where coastal currents are also low. Sand and gravel-rich deltas are high-energy deltas, where waves dominate, and mud and silt are carried much farther from the mouth of the river.
Much of the sediment carried by the Amazon can come from the Andes mountains, and the final distance traveled by the sediment is .
In comparison, continents are temporary stewards of mud and silt, and the inevitable home of mudrock sediments is the oceans. Reference the mudrock cycle below in order to understand the burial and resurgence of the various particles.
There are various environments in the oceans, including deep-sea trenches, Abyssal plain, Seamounts, convergent, divergent, and transform plate margins.
The world's rivers transport the largest volume of suspended and dissolved loads of clay and silt to the sea, where they are deposited on ocean shelves. At the poles, glaciers and floating ice drop deposits directly to the sea floor. Winds can provide fine grained material from arid regions, and explosive volcanic eruptions contribute as well. All of these sources vary in the rate of their contribution.
Sediment moves to the deeper parts of the oceans by gravity, and the processes in the ocean are comparable to those on land.
Location has a large impact on the types of mudrocks found in ocean environments. For example, the Apalachicola River, which drains in the subtropics of the United States, carries up to sixty to eighty percent kaolinite mud, whereas the Mississippi carries only ten to twenty percent kaolinite.Blatt, Harvey. 2005. Origin of Sedimentary Rocks. Prentice-Hall, New Jersey.
Eventually, the mudrock will move its way kilometers below the subsurface, where pressure and temperature cook the mudstone into a metamorphosed gneiss. The metamorphosed gneiss will make its way to the surface once again as country rock or as magma in a volcano, and the whole process will begin again.
One of the most famous mudrock formations is the Burgess Shale in Western Canada, which formed during the Cambrian. At this site, soft bodied creatures were preserved, some in whole, by the activity of mud in a sea. Solid skeletons are, generally, the only remnants of ancient life preserved; however, the Burgess Shale includes hard body parts such as bones, skeletons, teeth, and also soft body parts such as muscles, gills, and digestive systems. The Burgess Shale is one of the most significant fossil locations on Earth, preserving innumerable specimens of 500 million year old species, and its preservation is due to the protection of mudrock.
Another noteworthy formation is the Morrison Formation. This area covers 1.5 million square miles, stretching from Montana to New Mexico in the United States. It is considered one of the world's most significant dinosaur burial grounds, and its many fossils can be found in museums around the world. This site includes dinosaur fossils from a few dinosaur species, including the Allosaurus, Diplodocus, Stegosaurus, and Brontosaurus. There are also lungfish, freshwater mollusks, Fern and Conifer. This deposit was formed by a humid, tropical climate with lakes, swamps, and rivers, which deposited mudrock. Inevitably, mudrock preserved countless specimens from the late Jurassic, roughly 150 million years ago.
Metamorphosed shale can hold emerald and gold, and mudrocks can host ore metals such as lead and zinc. Mudrocks are important in the preservation of petroleum and natural gas, due to their low porosity, and are commonly used by engineers to inhibit harmful fluid leakage from landfills.
Sandstone and Carbonate rock record high-energy events in our history, and they are much easier to study. Interbedded between the high-energy events are mudrock formations that have recorded quieter, normal conditions in our Earth's history. It is the quieter, normal events of our geologic history we don't yet understand. Sandstones provide the big tectonic picture and some indications of water depth; mudrocks record oxygen content, a generally richer fossil abundance and diversity, and a much more informative geochemistry.
In recognition of mud and mudrocks' sometimes unappreciated importance to earth sciences, the Geological Society of London named 2015 as the "Year of Mud".
|
|