In physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space Moyal product.
The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold.
Mathematically, it is a deformation of the phase-space Poisson bracket (essentially an extension of it), the deformation parameter being the reduced Planck constant . Thus, its group contraction yields the Poisson bracket Lie algebra.
Up to formal equivalence, the Moyal Bracket is the unique one-parameter Lie-algebraic deformation of the Poisson bracket. Its algebraic isomorphism to the algebra of commutators bypasses the negative result of the Groenewold–van Hove theorem, which precludes such an isomorphism for the Poisson bracket, a question implicitly raised by Dirac in his 1926 doctoral thesis,P. A. M. Dirac (1926) Cambridge University Thesis "Quantum Mechanics" the "method of classical analogy" for quantization.P.A.M. Dirac, "The Principles of Quantum Mechanics" ( Clarendon Press Oxford, 1958)
For instance, in a two-dimensional flat phase space, and for the Weyl-map correspondence, the Moyal bracket reads,
& = \{f,g\} + O(\hbar^2), \\\end{align} where ★ is the star-product operator in phase space (cf. Moyal product), while and are differentiable phase-space functions, and is their Poisson bracket.Conversely, the Poisson bracket is formally expressible in terms of the star product, = 2.
More specifically, in operational calculus language, this equals
The left & right arrows over the partial derivatives denote the left & right partial derivatives. Sometimes the Moyal bracket is referred to as the Sine bracket.
A popular (Fourier) integral representation for it, introduced by George Baker is
Each correspondence map from phase space to Hilbert space induces a characteristic "Moyal" bracket (such as the one illustrated here for the Weyl map). All such Moyal brackets are formally equivalent among themselves, in accordance with a systematic theory.Cosmas Zachos, David Fairlie, and Thomas Curtright, "Quantum Mechanics in Phase Space" ( World Scientific, Singapore, 2005) .
The Moyal bracket specifies the eponymous infinite-dimensional Lie algebra—it is antisymmetric in its arguments and , and satisfies the Jacobi identity. The corresponding abstract Lie algebra is realized by ★, so that
Generalization of the Moyal bracket for quantum systems with second-class constraints involves an operation on equivalence classes of functions in phase space, which can be considered as a quantum deformation of the Dirac bracket.
The sine and cosine brackets are, respectively, the results of antisymmetrizing and symmetrizing the star product. Thus, as the sine bracket is the Wigner map of the commutator, the cosine bracket is the Wigner image of the anticommutator in standard quantum mechanics. Similarly, as the Moyal bracket equals the Poisson bracket up to higher orders of , the cosine bracket equals the ordinary product up to higher orders of . In the classical limit, the Moyal bracket helps reduction to the Liouville equation (formulated in terms of the Poisson bracket), as the cosine bracket leads to the classical Hamilton–Jacobi equation.Basil Hiley: Phase space descriptions of quantum phenomena, in: A. Khrennikov (ed.): Quantum Theory: Re-consideration of Foundations–2, pp. 267-286, Växjö University Press, Sweden, 2003 ( PDF)
The sine and cosine bracket also stand in relation to equations of a purely algebraic description of quantum mechanics.M. R. Brown, B. J. Hiley: Schrodinger revisited: an algebraic approach, arXiv:quant-ph/0005026 (submitted 4 May 2000, version of 19 July 2004, retrieved June 3, 2011)
|
|