Product Code Database
Example Keywords: table -jeans $19-152
barcode-scavenger
   » » Wiki: Molybdopterin
Tag Wiki 'Molybdopterin'.
Tag

Molybdopterins are a class of cofactors found in most -containing and all -containing enzymes. Synonyms for molybdopterin are: MPT and pyranopterin-dithiolate. The nomenclature for this biomolecule can be confusing: Molybdopterin itself contains no molybdenum; rather, this is the name of the ligand (a ) that will bind the active metal. After molybdopterin is eventually complexed with molybdenum, the complete ligand is usually called molybdenum cofactor. Molybdopterin is required for all forms of life.

Molybdopterin consists of a pyranopterin, a complex featuring a fused to a ring. In addition, the pyran ring features two , which serve as in molybdo- and tungstoenzymes. In some cases, the alkyl phosphate group is replaced by an alkyl diphosphate . Enzymes that contain the molybdopterin cofactor include , , , and nitrate reductase.

The only molybdenum-containing enzymes that do not feature molybdopterins are the (enzymes that fix nitrogen). These contain an iron-sulfur center of a very different type, which also contains molybdenum. Structure, synthesis, empirical formula for the di-sulfhydryl. Accessed Nov. 16, 2009.


Biosynthesis
Unlike many other cofactors, molybdenum cofactor (Moco) cannot be taken up as a nutrient. The cofactor thus requires de novo biosynthesis. Molybdenum cofactor biosynthesis occurs in four steps: (i) the radical-mediated cyclization of nucleotide, guanosine triphosphate (GTP), to (8S)‑3',8‐cyclo‑7,8‑dihydroguanosine 5'‑triphosphate (), (ii) the formation of cyclic pyranopterin monophosphate (cPMP) from the , (iii) the conversion of cPMP into molybdopterin (MPT), (iv) the insertion of molybdate into MPT to form Moco.

Two enzyme-mediated reactions convert guanosine triphosphate to the cyclic phosphate of pyranopterin. One of these enzymes is a , a family of enzymes often associated with C—X bond-forming reactions (X = S, N). This intermediate pyranopterin is then converted to the molybdopterin via the action of three further enzymes. In this conversion, the enedithiolate is formed, although the substituents on sulfur remain unknown. is conveyed from cysteinyl persulfide in a manner reminiscent of the biosynthesis of iron-sulfur proteins. The monophosphate is adenylated (coupled to ADP) in a step that activates the cofactor toward binding Mo or W. These metals are imported as their oxyanions, , and .

In some enzymes, such as , the metal is bound to one molybdopterin, whereas, in other enzymes, e.g., , the metal is bound to two molybdopterin cofactors.

Models for the active sites of enzymes molybdopterin-containing enzymes are based on a class of ligands known as .


Tungsten derivatives
Some bacterial oxidoreductases use in a similar manner as by using it in a tungsten- complex, with molybdopterin. Thus, molybdopterin may complex with either molybdenum or tungsten. Tungsten-using enzymes typically reduce free carboxylic acids to aldehydes.
(1999). 9780306450532, Springer. .

The first tungsten-requiring enzyme to be discovered also requires selenium (though the precise form is unknown). In this case, the tungsten-selenium pair has been speculated to function analogously to the molybdenum-sulfur pairing of some molybdenum cofactor-requiring enzymes. Although a tungsten-containing xanthine dehydrogenase from bacteria has been found to contain tungsten-molybdopterin and also non-protein-bound selenium (thus removing the possibility of selenium in or form), a tungsten-selenium molybdopterin complex has not been definitively described.


Enzymes that use molybdopterin
Enzymes that use molybdopterin as cofactor or are given below. Molybdopterin is a:

  • Cofactor of: , , , nitrate reductase, ethylbenzene dehydrogenase, glyceraldehyde-3-phosphate ferredoxin oxidoreductase, respiratory arsenate reductase, carbon monoxide dehydrogenase, .
  • Prosthetic group of: formate dehydrogenase, purine hydroxylase, thiosulfate reductase.


See also
  • Molybdenum cofactor deficiency, a genetic illness.
  • , molybdenum cofactor sulfurase
  • MOCS1, MOCS2, MOCS3,

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs