Moisture meters are measuring instruments used to measure the percentage of water in a given substance, as physical properties are strongly affected by moisture content and high moisture content for a period of time may progressively degrade a material. Meters exist for various substances, including wood, building materials, concrete, and soil.
Direct gravimetric measurement of free moisture requires removing, drying, and weighing of a sample, so moisture sensors measure the volumetric water content indirectly by using some other property of the substrate, such as electrical resistance or dielectric constant.
Moisture content can be used to determine if the material is ready for use, unexpectedly wet or dry, or otherwise in need of further inspection. Wood and paper products are very sensitive to their moisture content. Physical properties are strongly affected by moisture content and high moisture content for a period of time may progressively degrade a material.
In-kiln drying is usually monitored by some type of moisture meter. Moisture meters are used to measure the amount of water in the wood so that the woodworker can determine if it is suitable for the intended purpose. Building inspectors and many more, carpenters, hobbyists, and other woodworkers often are required to have moisture meters. Wood flooring installers, for example, have to verify that the MC of the wood matches the relative humidity in the air of the building. If this step is skipped, a vast array of problems may present itself: cracking, cupping, crowning, buckling, sunken joints, and cracked finishes.
The problems caused by varying degrees of moisture content in wood go beyond simple shrinkage in the dimensions of wood parts. Problems with distortions in the shape of the wood, such as twisting, warping and cupping, occur because of the difference in the degree of dimensional change in wood cells tangentially (perpendicular to the grain and parallel to the ) versus radially (perpendicular to the growth rings).
A moisture meter gives a reading of the approximate moisture content of wood. The reading helps in determining whether the wood is suitably dry for its intended purpose. The moisture content reading can also assist in planning a project design that will accommodate future changes in dimension caused by changes in relative humidity. The amount of overall shrinkage lumber will undergo in the drying process varies from wood species to wood species. The difference between radial and tangential shrinkage also varies from species to species. Woods with a low ratio of tangential to radial shrinkage, such as teak and mahogany, are less prone to distortion due to changes in moisture content than woods with a high ratio, such as eastern white pine and certain species of oak. Species with both low overall shrinkage and a low tangential/radial shrinkage ratio are more stable and will react better to changes in moisture content.
For wood that is to be used in making furniture, for , in construction or for any building project, the ideal state is one of equilibrium moisture content (EMC). EMC means that the wood is in balance with the relative humidity it surrounding environment, and is therefore neither gaining or losing in moisture content. In reality, however, it is extremely rare for an environment to maintain a constant fixed relative humidity, and some degree of dimensional change along with seasonal changes in relative humidity is to be expected.
|
|