Meteorology is the scientific study of the Earth's atmosphere and short-term atmospheric phenomena (i.e. weather), with a focus on weather forecasting. It has applications in the military, aviation, energy production, transport, agriculture, construction, weather warnings and disaster management.
Along with climatology, atmospheric physics and atmospheric chemistry, meteorology forms the broader field of the atmospheric sciences. The interactions between Earth's atmosphere and its (notably El Niño and La Niña) are studied in the interdisciplinary field of hydrometeorology. Other interdisciplinary areas include biometeorology, space weather and planetary meteorology. Marine weather forecasting relates meteorology to maritime and coastal safety, based on atmospheric interactions with large bodies of water.
Meteorologists study meteorological phenomena driven by solar radiation, Earth's rotation, and other factors. These include everyday weather like , precipitation, wind patterns as well as severe weather events such as tropical cyclones and severe . Such phenomena are quantified using variables like air temperature, air pressure and humidity, which are then used to forecast weather at local (microscale), regional (mesoscale and synoptic scale), and global scales. Meteorologists collect data using basic instruments like , and (for surface-level measurements), alongside advanced tools like weather satellites, weather balloon, reconnaissance aircraft, weather buoy and weather radar. The World Meteorological Organization (WMO) ensures international standardization of meteorological research.
The study of meteorology dates back Millennium. Ancient civilizations tried to predict weather through folklore, astrology and . Aristotle's treatise Meteorology sums up early observations of the field, which advanced little during early medieval times but experienced a resurgence during the Renaissance, when Alhazen and René Descartes challenged Aristotelian theories, emphasizing scientific methods. In the 18th century, accurate measurement tools (e.g., barometer and thermometer) were developed, and the first meteorological society was founded. In the 19th century, telegraph-based weather observation networks were formed across broad regions. In the 20th century, numerical weather prediction (NWP), coupled with advanced satellite and radar technology, introduced sophisticated forecasting models. Later, revolutionized forecasting by processing vast datasets in real time and automatically solving modelling equations. 21st-century meteorology is highly accurate and driven by big data and supercomputing. It is adopting innovations like machine learning, ensemble forecasting, and high-resolution global climate modeling. Climate change–induced extreme weather poses new challenges for forecasting and research, while inherent uncertainty remains because of the atmosphere's chaos theory nature (see butterfly effect).
Ancient Indian Upanishads contain mentions of clouds and . The Samaveda mentions sacrifices to be performed when certain phenomena were noticed. Varāhamihira's classical work Brihatsamhita, written about 500 AD, provides evidence of weather observation.
Cuneiform inscriptions on tablets included associations between thunder and rain. The Babylon differentiated the 22° and 46° halos.
The Ancient Greece were the first to make theories about the weather. Many natural philosophers studied the weather. However, as meteorological instruments did not exist, the inquiry was largely qualitative, and could only be judged by more general theoretical speculations. Herodotus states that Thales predicted the solar eclipse of 585 BC. He studied Babylonian equinox tables. According to Seneca, he explained that the cause of the Nile's annual floods was due to northerly winds hindering its descent by the sea. Anaximander and Anaximenes thought that thunder and lightning was caused by air smashing against the cloud, thus kindling the flame. Early meteorological theories generally considered that there was a fire-like substance in the atmosphere. Anaximander defined wind as a flowing of air, but this was not generally accepted for centuries. A theory to explain summer hail was first proposed by Anaxagoras. He observed that air temperature decreased with increasing height and that clouds contain moisture. He also noted that heat caused objects to rise, and therefore the heat on a summer day would drive clouds to an altitude where the moisture would freeze. Empedocles theorized on the change of the seasons. He believed that fire and water opposed each other in the atmosphere, and when fire gained the upper hand, the result was summer, and when water did, it was winter. Democritus also wrote about the flooding of the Nile. He said that snow in northern parts of the world melted during the summer solstice. This would cause vapors to form clouds, which would cause storms when driven to the Nile by northerly winds, thus filling the lakes and the Nile. Hippocrates inquired into the effect of weather on health. Eudoxus claimed that bad weather followed four-year periods, according to Pliny.
The treatise On the Universe (composed before 250 BC or between 350 and 200 BC) noted:
After Aristotle, progress in meteorology stalled for a long time. Theophrastus compiled a book on weather forecasting, called the Book of Signs, as well as On Winds. He gave hundreds of signs for weather phenomena for a period up to a year. His system was based on dividing the year by the setting and the rising of the Pleiad, halves into solstices and equinoxes, and the continuity of the weather for those periods. He also divided months into the new moon, fourth day, eighth day and full moon, in likelihood of a change in the weather occurring. The day was divided into sunrise, mid-morning, noon, mid-afternoon and sunset, with corresponding divisions of the night, with change being likely at one of these divisions. Applying the divisions and a principle of balance in the yearly weather, he came up with forecasts like that if a lot of rain falls in the winter, the spring is usually dry. Rules based on actions of animals are also present in his work, like that if a dog rolls on the ground, it is a sign of a storm. Shooting stars and the Moon were also considered significant. However, he made no attempt to explain these phenomena, referring only to the Aristotelian method. The work of Theophrastus remained a dominant influence in weather forecasting for nearly 2,000 years.
Speculation on the cause of the flooding of the Nile ended when Eratosthenes, according to Proclus, stated that it was known that man had gone to the sources of the Nile and observed the rains, although interest in its implications continued.
During the era of Roman Greece and Europe, scientific interest in meteorology waned. In the 1st century BC, most natural philosophers claimed that the clouds and winds extended up to 111 miles, but Posidonius thought that they reached up to five miles, after which the air is clear, liquid and luminous. He closely followed Aristotle's theories. By the end of the second century BC, the center of science shifted from Athens to Alexandria, home to the ancient Library of Alexandria. In the 2nd century AD, Ptolemy's Almagest dealt with meteorology, because it was considered a subset of astronomy. He gave several astrological weather predictions. He constructed a map of the world divided into climatic zones by their illumination, in which the length of the Summer solstice increased by half an hour per zone between the equator and the Arctic. Ptolemy wrote on the atmospheric refraction of light in the context of astronomical observations.Smith AM, 1996. "Ptolemy's Theory of Visual Perception: An English Translation of the Optics", pp. 46. Transactions of the American Philosophical Society vol. 86, part 2.
In 25 AD, Pomponius Mela, a Roman geographer, formalized the climatic zone system. In 63–64 AD, Seneca wrote Naturales quaestiones. It was a compilation and synthesis of ancient Greek theories. However, theology was of foremost importance to Seneca, and he believed that phenomena such as lightning were tied to fate. The second book (chapter) of Pliny the Elder's Natural History covers meteorology. He states that more than twenty ancient Greek authors studied meteorology. He did not make any personal contributions, and the value of his work is in preserving earlier speculation, much like Seneca's work.
From 400 to 1100, scientific learning in Europe was preserved by the clergy. Isidore of Seville devoted a considerable attention to meteorology in Etymologiae, De ordine creaturum and De natura rerum. Bede was the first Englishman to write about the weather in De natura rerum in 703. The work was a summary of then extant classical sources. However, Aristotle's works were largely lost until the 12th century, including Meteorologica. Isidore and Bede were scientifically minded, but they adhered to the letter of Scripture.
Islamic civilization translated many ancient works into Arabic which were transmitted and translated in western Europe to Latin.
In the 9th century, Al-Dinawari wrote the Kitab al-Nabat (Book of Plants), in which he deals with the application of meteorology to agriculture during the Arab Agricultural Revolution. He describes the meteorological character of the sky, the and , the sun and moon, the indicating and rain, the anwa (heavenly bodies of rain), and atmospheric phenomena such as winds, thunder, lightning, snow, floods, valleys, rivers, lakes.
In 1021, Alhazen showed that atmospheric refraction is also responsible for twilight in Opticae thesaurus; he estimated that twilight begins when the sun is 19 degrees below the horizon, and also used a geometric determination based on this to estimate the maximum possible height of the Earth's atmosphere as 52,000 passim (about 49 miles, or 79 km).
Adelard of Bath was one of the early translators of the classics. He also discussed meteorological topics in his Quaestiones naturales. He thought dense air produced propulsion in the form of wind. He explained thunder by saying that it was due to ice colliding in clouds, and in Summer it melted. In the 13th century, Aristotelian theories reestablished dominance in meteorology. For the next four centuries, meteorological work by and large was mostly commentary. It has been estimated over 156 commentaries on the Meteorologica were written before 1650.
Experimental evidence was less important than appeal to the classics and authority in medieval thought. In the 13th century, Roger Bacon advocated experimentation and the mathematical approach. In his Opus Majus, he followed Aristotle's theory on the atmosphere being composed of water, air, and fire, supplemented by optics and geometric proofs. He noted that Ptolemy's climatic zones had to be adjusted for topography.
Albertus Magnus was the first to propose that each drop of falling rain had the form of a small sphere, and that this form meant that the rainbow was produced by light interacting with each raindrop. Roger Bacon was the first to calculate the angular size of the rainbow. He stated that a rainbow summit cannot appear higher than 42 degrees above the horizon.
In the late 13th century and early 14th century, Kamāl al-Dīn al-Fārisī and Theodoric of Freiberg were the first to give the correct explanations for the primary rainbow phenomenon. Theodoric went further and also explained the secondary rainbow.
By the middle of the 16th century, meteorology had developed along two lines: theoretical science based on Meteorologica, and astrological weather forecasting. The pseudoscientific prediction by natural signs became popular and enjoyed protection of the church and princes. This was supported by scientists like Regiomontanus, Leonard Digges, and Johannes Kepler. However, there were skeptics. In the 14th century, Nicole Oresme believed that weather forecasting was possible, but that the rules for it were unknown at the time. Astrological influence in meteorology persisted until the 18th century.
Gerolamo Cardano's De Subilitate (1550) was the first work to challenge fundamental aspects of Aristotelian theory. Cardano maintained that there were only three basic elements- earth, air, and water. He discounted fire because it needed material to spread and produced nothing. Cardano thought there were two kinds of air: free air and enclosed air. The former destroyed inanimate things and preserved animate things, while the latter had the opposite effect.
René Descartes's Discourse on the Method (1637) typifies the beginning of the scientific revolution in meteorology. His scientific method had four principles: to never accept anything unless one clearly knew it to be true; to divide every difficult problem into small problems to tackle; to proceed from the simple to the complex, always seeking relationships; to be as complete and thorough as possible with no prejudice.
In the appendix Les Meteores, he applied these principles to meteorology. He discussed terrestrial bodies and vapors which arise from them, proceeding to explain the formation of clouds from drops of water, and winds, clouds then dissolving into rain, hail and snow. He also discussed the effects of light on the rainbow. Descartes hypothesized that all bodies were composed of small particles of different shapes and interwovenness. All of his theories were based on this hypothesis. He explained the rain as caused by clouds becoming too large for the air to hold, and that clouds became snow if the air was not warm enough to melt them, or hail if they met colder wind. Like his predecessors, Descartes's method was deductive, as meteorological instruments were not developed and extensively used yet. He introduced the Cartesian coordinate system to meteorology and stressed the importance of mathematics in natural science. His work established meteorology as a legitimate branch of physics.
In the 18th century, the invention of the thermometer and barometer allowed for more accurate measurements of temperature and pressure, leading to a better understanding of atmospheric processes. This century also saw the birth of the first meteorological society, the Societas Meteorologica Palatina in 1780.
In the 19th century, advances in technology such as the telegraph and photography led to the creation of weather observing networks and the ability to track storms. Additionally, scientists began to use mathematical models to make predictions about the weather. The 20th century saw the development of radar and satellite technology, which greatly improved the ability to observe and track weather systems. In addition, meteorologists and atmospheric scientists started to create the first weather forecasts and temperature predictions.
In the 20th and 21st centuries, with the advent of computer models and big data, meteorology has become increasingly dependent on numerical methods and computer simulations. This has greatly improved weather forecasting and climate predictions. Additionally, meteorology has expanded to include other areas such as air quality, atmospheric chemistry, and climatology. The advancement in observational, theoretical and computational technologies has enabled ever more accurate weather predictions and understanding of weather pattern and air pollution. In current time, with the advancement in weather forecasting and satellite technology, meteorology has become an integral part of everyday life, and is used for many purposes such as aviation, agriculture, and disaster management.
During the Age of Enlightenment meteorology tried to rationalise traditional weather lore, including astrological meteorology. But there were also attempts to establish a theoretical understanding of weather phenomena. Edmond Halley and George Hadley tried to explain trade winds. They reasoned that the rising mass of heated equator air is replaced by an inflow of cooler air from high latitudes. A flow of warm air at high altitude from equator to poles in turn established an early picture of circulation. Frustration with the lack of discipline among weather observers, and the poor quality of the instruments, led the early modern nation states to organise large observation networks. Thus, by the end of the 18th century, meteorologists had access to large quantities of reliable weather data. In 1832, an electromagnetic telegraph was created by Baron Schilling. The arrival of the electrical telegraph in 1837 afforded, for the first time, a practical method for quickly gathering surface weather observations from a wide area.
This data could be used to produce maps of the state of the atmosphere for a region near the Earth's surface and to study how these states evolved through time. To make frequent weather forecasts based on these data required a reliable network of observations, but it was not until 1849 that the Smithsonian Institution began to establish an observation network across the United States under the leadership of Joseph Henry. Similar observation networks were established in Europe at this time. The Reverend William Clement Ley was key in understanding of cirrus clouds and early understandings of . Charles Kenneth Mackinnon Douglas, known as 'CKM' Douglas, read Ley's papers after his death and carried on the early study of weather systems. 19th-century researchers in meteorology were drawn from military or medical backgrounds, rather than trained as dedicated scientists. In 1854, the United Kingdom government appointed Robert FitzRoy to the new office of Meteorological Statist to the Board of Trade with the task of gathering weather observations at sea. FitzRoy's office became the Met Office in 1854, the second oldest national meteorological service in the world (the Central Institution for Meteorology and Geodynamics (ZAMG) in Austria was founded in 1851 and is the oldest weather service in the world). The first daily weather forecasts made by FitzRoy's Office were published in The Times newspaper in 1860. The following year a system was introduced of hoisting storm warning cones at principal ports when a gale was expected.
FitzRoy coined the term "weather forecast" and tried to separate scientific approaches from prophetic ones.
Over the next 50 years, many countries established national meteorological services. The India Meteorological Department (1875) was established to follow tropical cyclone and monsoon. The Finnish Meteorological Central Office (1881) was formed from part of Magnetic Observatory of Helsinki University. Japan's Tokyo Meteorological Observatory, the forerunner of the Japan Meteorological Agency, began constructing surface weather maps in 1883. The United States Weather Bureau (1890) was established under the United States Department of Agriculture. The Australian Bureau of Meteorology (1906) was established by a Meteorology Act to unify existing state meteorological services.
It was not until later in the 20th century that advances in the understanding of atmospheric physics led to the foundation of modern numerical weather prediction. In 1922, Lewis Fry Richardson published "Weather Prediction By Numerical Process",Richardson, Lewis Fry, Weather Prediction by Numerical Process (Cambridge, England: Cambridge University Press, 1922). Available on-line at: Internet Archive.org. after finding notes and derivations he worked on as an ambulance driver in World War I. He described how small terms in the prognostic fluid dynamics equations that govern atmospheric flow could be neglected, and a numerical calculation scheme that could be devised to allow predictions. Richardson envisioned a large auditorium of thousands of people performing the calculations. However, the sheer number of calculations required was too large to complete without electronic computers, and the size of the grid and time steps used in the calculations led to unrealistic results. Though numerical analysis later found that this was due to numerical instability.
Starting in the 1950s, number forecasts with computers became feasible. The first derived this way used barotropic (single-vertical-level) models, and could successfully predict the large-scale movement of midlatitude , that is, the pattern of atmospheric lows and highs. In 1959, the UK Meteorological Office received its first computer, a Ferranti Mercury.
In the 1960s, the Chaos theory nature of the atmosphere was first observed and mathematically described by Edward Lorenz, founding the field of chaos theory.Edward N. Lorenz, "Deterministic non-periodic flow", Journal of the Atmospheric Sciences, vol. 20, pages 130–141 (1963). These advances have led to the current use of ensemble forecasting in most major forecasting centers, to take into account uncertainty arising from the chaotic nature of the atmosphere. Mathematical models used to predict the long term weather of the Earth (), have been developed that have a resolution today that are as coarse as the older weather prediction models. These climate models are used to investigate long-term climate shifts, such as what effects might be caused by human emission of .
Although weather forecasts and warnings are the best known products of meteorologists for the public, weather presenters on radio and television are not necessarily professional meteorologists. They are most often reporters with little formal meteorological training, using unregulated titles such as weather specialist or weatherman. The American Meteorological Society and National Weather Association issue "Seals of Approval" to weather broadcasters who meet certain requirements but this is not mandatory to be hired by the media.
Sets of surface measurements are important data to meteorologists. They give a snapshot of a variety of weather conditions at one single location and are usually at a weather station, a ship or a weather buoy. The measurements taken at a weather station can include any number of atmospheric observables. Usually, temperature, pressure, wind measurements, and humidity are the variables that are measured by a thermometer, barometer, anemometer, and hygrometer, respectively. Professional stations may also include air quality sensors (carbon monoxide, carbon dioxide, methane, ozone, dust, and smoke), ceilometer (cloud ceiling), falling precipitation sensor, level sensor, lightning, microphone (, , thunder), pyranometer/pyrheliometer/spectroradiometer (IR/Vis/UV photodiodes), rain gauge/snow gauge, scintillation counter (background radiation, fallout, radon), seismometer ( and tremors), transmissometer (visibility), and a GPS clock for data logging. Upper air data are of crucial importance for weather forecasting. The most widely used technique is launches of . Supplementing the radiosondes a network of aircraft collection is organized by the World Meteorological Organization.
Remote sensing, as used in meteorology, is the concept of collecting data from remote weather events and subsequently producing weather information. The common types of remote sensing are Radar, Lidar, and (or photogrammetry). Each collects data about the atmosphere from a remote location and, usually, stores the data where the instrument is located. Radar and Lidar are not passive because both use EM radiation to illuminate a specific portion of the atmosphere.Peebles, Peyton, 1998, Radar Principles, John Wiley & Sons, Inc., New York, . Weather satellites along with more general-purpose Earth-observing satellites circling the earth at various altitudes have become an indispensable tool for studying a wide range of phenomena from forest fires to El Niño.
Other subclassifications are used to describe the unique, local, or broad effects within those subclasses.
+ Scales of Atmospheric Motion Systems |
10−7 |
10−2 – 10−1 |
10−1 – 1 |
1–10 |
10 – 102 |
102 |
103 |
104 – 105 |
105 |
106 |
107 |
Numerical Weather Prediction is a main focus in understanding air–sea interaction, tropical meteorology, atmospheric predictability, and tropospheric/stratospheric processes. Global Modelling , US Naval Research Laboratory, Monterey, Ca. The Naval Research Laboratory in Monterey, California, developed a global atmospheric model called Navy Operational Global Atmospheric Prediction System (NOGAPS). NOGAPS is run operationally at Fleet Numerical Meteorology and Oceanography Center for the United States Military. Many other global atmospheric models are run by national meteorological agencies.
Once an all-human endeavor based mainly upon changes in barometric pressure, current weather conditions, and sky condition, forecast models are now used to determine future conditions. Human input is still required to pick the best possible forecast model to base the forecast upon, which involves pattern recognition skills, , knowledge of model performance, and knowledge of model biases. The chaos theory nature of the atmosphere, the massive computational power required to solve the equations that describe the atmosphere, error involved in measuring the initial conditions, and an incomplete understanding of atmospheric processes mean that forecasts become less accurate as the difference in current time and the time for which the forecast is being made (the range of the forecast) increases. The use of ensembles and model consensus help narrow the error and pick the most likely outcome.Richard J. Pasch, Mike Fiorino, and Chris Landsea. TPC/NHC’S REVIEW OF THE NCEP PRODUCTION SUITE FOR 2006. Retrieved on 5 May 2008.
There are a variety of end uses to weather forecasts. Weather warnings are important forecasts because they are used to protect life and property. Forecasts based on temperature and precipitation are important to agriculture, and therefore to commodity traders within stock markets. Temperature forecasts are used by utility companies to estimate demand over coming days. On an everyday basis, people use weather forecasts to determine what to wear. Since outdoor activities are severely curtailed by heavy rain, snow, and wind chill, forecasts can be used to plan activities around these events, and to plan ahead and survive them.
The effects of ice on aircraft are cumulative—thrust is reduced, drag increases, lift lessens, and weight increases. The results are an increase in stall speed and a deterioration of aircraft performance. In extreme cases, 2 to 3 inches of ice can form on the leading edge of the airfoil in less than 5 minutes. It takes but 1/2 inch of ice to reduce the lifting power of some aircraft by 50 percent and increases the frictional drag by an equal percentage.
The multidisciplinary nature of the branch can result in technical challenges, since tools and solutions from each of the individual disciplines involved may behave slightly differently, be optimized for different hard- and software platforms and use different data formats. There are some initiatives – such as the DRIHM project – that are trying to address this issue. DRIHM News, number 1, March 2012, p2 "An ideal environment for hydro-meteorology research at the European level"
|
|