Mendelevium is a synthetic chemical element; it has Chemical symbol Md (formerly Mv) and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopic quantities by neutron bombardment of Light element. It is the third-to-last actinide and the ninth transuranic element and the first transfermium. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. Seventeen isotopes are known; the most stable is 258Md with half-life 51.59 days; however, the shorter-lived 256Md (half-life 77.7 ) is most commonly used in chemistry because it can be produced on a larger scale.
Mendelevium was discovered by bombarding einsteinium with in 1955, the method still used to produce it today. It is named after Dmitri Mendeleev, the father of the periodic table. Using available microgram quantities of einsteinium-253, over a million mendelevium atoms may be made each hour. The chemistry of mendelevium is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. All known isotopes of mendelevium have short half-lives; there are currently no uses for it outside basic scientific research, and only small amounts are produced.
To predict if the production of mendelevium would be possible, the team made use of a rough calculation. The number of atoms that would be produced would be approximately equal to the product of the number of atoms of target material, the target's cross section, the ion beam intensity, and the time of bombardment; this last factor was related to the half-life of the product when bombarding for a time on the order of its half-life. This gave one atom per experiment. Thus under optimum conditions, the preparation of only one atom of element 101 per experiment could be expected. This calculation demonstrated that it was feasible to go ahead with the experiment. The target material, einsteinium-253, could be produced readily from irradiating plutonium: one year of irradiation would give a billion atoms, and its three-week half-life meant that the element 101 experiments could be conducted in one week after the produced einsteinium was separated and purified to make the target. However, it was necessary to upgrade the cyclotron to obtain the needed intensity of 1014 alpha particles per second; Seaborg applied for the necessary funds.
While Seaborg applied for funding, Harvey worked on the einsteinium target, while Thomson and Choppin focused on methods for chemical isolation. Choppin suggested using α-hydroxyisobutyric acid to separate the mendelevium atoms from those of the lighter actinides. The actual synthesis was done by a recoil technique, introduced by Albert Ghiorso. In this technique, the einsteinium was placed on the opposite side of the target from the beam, so that the recoiling mendelevium atoms would get enough momentum to leave the target and be caught on a catcher foil made of gold. This recoil target was made by an electroplating technique, developed by Alfred Chetham-Strode. This technique gave a very high yield, which was absolutely necessary when working with such a rare and valuable product as the einsteinium target material. The recoil target consisted of 109 atoms of 253Es which were deposited electrolytically on a thin gold foil. It was bombarded by 41 MeV in the Berkeley cyclotron with a very high beam density of 6×1013 particles per second over an area of 0.05 cm2. The target was cooled by water or liquid helium, and the foil could be replaced.
Initial experiments were carried out in September 1954. No alpha decay was seen from mendelevium atoms; thus, Ghiorso suggested that the mendelevium had all decayed by electron capture to fermium and that the experiment should be repeated to search instead for spontaneous fission events. The repetition of the experiment happened in February 1955.
On the day of discovery, 19 February, alpha irradiation of the einsteinium target occurred in three three-hour sessions. The cyclotron was in the University of California campus, while the Radiation Laboratory was on the next hill. To deal with this situation, a complex procedure was used: Ghiorso took the catcher foils (there were three targets and three foils) from the cyclotron to Harvey, who would use aqua regia to dissolve it and pass it through an anion-exchange resin column to separate out the transuranium elements from the gold and other products. The resultant drops entered a test tube, which Choppin and Ghiorso took in a car to get to the Radiation Laboratory as soon as possible. There Thompson and Choppin used a cation-exchange resin column and the α-hydroxyisobutyric acid. The solution drops were collected on platinum disks and dried under heat lamps. The three disks were expected to contain respectively the fermium, no new elements, and the mendelevium. Finally, they were placed in their own counters, which were connected to recorders such that spontaneous fission events would be recorded as huge deflections in a graph showing the number and time of the decays. There thus was no direct detection, but by observation of spontaneous fission events arising from its electron-capture daughter 256Fm. The first one was identified with a "hooray" followed by a "double hooray" and a "triple hooray". The fourth one eventually officially proved the chemical identification of the 101st element, mendelevium. In total, five decays were reported up until 4 a.m. Seaborg was notified and the team left to sleep. Additional analysis and further experimentation showed the produced mendelevium isotope to have mass 256 and to decay by electron capture to fermium-256 with a half-life of 157.6 minutes.
Being the first of the second hundred of the chemical elements, it was decided that the element would be named "mendelevium" after the Russian chemist Dmitri Mendeleev, father of the periodic table. Because this discovery came during the Cold War, Seaborg had to request permission of the government of the United States to propose that the element be named for a Russian, but it was granted. The name "mendelevium" was accepted by the International Union of Pure and Applied Chemistry (IUPAC) in 1955 with symbol "Mv", which was changed to "Md" in the next IUPAC General Assembly (Paris, 1957).
The lanthanides and actinides, in the metallic state, can exist as either divalent (such as europium and ytterbium) or trivalent (most other lanthanides) metals. The former have f ns2 configurations, whereas the latter have f n−1d1s2 configurations. In 1975, Johansson and Rosengren examined the measured and predicted values for the cohesive energy (enthalpy of crystallization) of the metallic and , both as divalent and trivalent metals.Silva, pp. 1626–8 The conclusion was that the increased binding energy of the Rn5f126d17s2 configuration over the Rn5f137s2 configuration for mendelevium was not enough to compensate for the energy needed to promote one 5f electron to 6d, as is true also for the very late actinides: thus einsteinium, fermium, mendelevium, and nobelium were expected to be divalent metals. The increasing predominance of the divalent state well before the actinide series concludes is attributed to the relativistic stabilization of the 5f electrons, which increases with increasing atomic number. Thermochromatographic studies with trace quantities of mendelevium by Zvara and Hübener from 1976 to 1982 confirmed this prediction. In 1990, Haire and Gibson estimated mendelevium metal to have an enthalpy of sublimation between 134 and 142 kJ/mol. Divalent mendelevium metal should have a metallic radius of around . Like the other divalent late actinides (except the once again trivalent lawrencium), metallic mendelevium should assume a face-centered cubic crystal structure. Mendelevium's melting point has been estimated at 800 °C, the same value as that predicted for the neighboring element nobelium.
Before mendelevium's discovery, Seaborg and Katz predicted that it should be predominantly trivalent in aqueous solution and hence should behave similarly to other tripositive lanthanides and actinides. After the synthesis of mendelevium in 1955, these predictions were confirmed, first in the observation at its discovery that it elution just after fermium in the trivalent actinide elution sequence from a cation-exchange column of resin, and later the 1967 observation that mendelevium could form insoluble and that coprecipitated with trivalent lanthanide salts. Cation-exchange and solvent extraction studies led to the conclusion that mendelevium was a trivalent actinide with an ionic radius somewhat smaller than that of the previous actinide, fermium. Mendelevium can form coordination complexes with 1,2-cyclohexanedinitrilotetraacetic acid (DCTA).
In redox conditions, mendelevium(III) can be easily reduced to mendelevium(II), which is stable in aqueous solution. The standard reduction potential of the E°(Md3+→Md2+) couple was variously estimated in 1967 as −0.10 V or −0.20 V: later 2013 experiments established the value as . In comparison, E°(Md3+→Md0) should be around −1.74 V, and E°(Md2+→Md0) should be around −2.5 V. Mendelevium(II)'s elution behavior has been compared with that of strontium(II) and europium(II).
In 1973, mendelevium(I) was reported to have been produced by Russian scientists, who obtained it by reducing higher oxidation states of mendelevium with samarium(II). It was found to be stable in neutral water–ethanol solution and be homologous to caesium(I). However, later experiments found no evidence for mendelevium(I) and found that mendelevium behaved like divalent elements when reduced, not like the monovalent . Nevertheless, the Russian team conducted further studies on the thermodynamics of cocrystallizing mendelevium with alkali metal , and concluded that mendelevium(I) had formed and could form mixed crystals with divalent elements, thus cocrystallizing with them. The status of the +1 oxidation state is still tentative.
The electrode potential E°(Md4+→Md3+) was predicted in 1975 to be +5.4 V; 1967 experiments with the strong oxidizing agent sodium bismuthate were unable to oxidize mendelevium(III) to mendelevium(IV).
The half-lives of mendelevium isotopes mostly increase smoothly from 244Md onwards, reaching a maximum at 258Md. Experiments and predictions suggest that the half-lives will then decrease, apart from 260Md with a half-life of 27.8 days, as spontaneous fission becomes the dominant decay mode due to the mutual repulsion of the protons posing a limit to the island of relative stability of long-lived nuclei in the actinide series. In addition, mendelevium is the element with the highest atomic number that has a known isotope with a half-life longer than one day.
Mendelevium-256, the chemically most important isotope of mendelevium, decays through electron capture 90% of the time and alpha decay 10% of the time. It is most easily detected through the spontaneous fission of its electron capture daughter fermium-256, but in the presence of other nuclides that undergo spontaneous fission, alpha decays at the characteristic energies for mendelevium-256 (7.205 and 7.139 electronvolt) can provide more useful identification.
The recoil momentum of the produced mendelevium-256 atoms is used to bring them physically far away from the einsteinium target from which they are produced, bringing them onto a thin foil of metal (usually beryllium, aluminium, platinum, or gold) just behind the target in a vacuum.Silva, pp. 1631–3 This eliminates the need for immediate chemical separation, which is both costly and prevents reusing of the expensive einsteinium target. The mendelevium atoms are then trapped in a gas atmosphere (frequently helium), and a gas jet from a small opening in the reaction chamber carries the mendelevium along. Using a long capillary tube, and including potassium chloride aerosols in the helium gas, the mendelevium atoms can be transported over tens of to be chemically analyzed and have their quantity determined. The mendelevium can then be separated from the foil material and other by applying acid to the foil and then coprecipitation the mendelevium with lanthanum fluoride, then using a cation-exchange resin column with a 10% ethanol solution saturated with hydrochloric acid, acting as an eluant. However, if the foil is made of gold and thin enough, it is enough to simply dissolve the gold in aqua regia before separating the trivalent actinides from the gold using anion-exchange chromatography, the eluant being 6 M hydrochloric acid.
Mendelevium can finally be separated from the other trivalent actinides using selective elution from a cation-exchange resin column, the eluant being ammonia α-HIB. Using the gas-jet method often renders the first two steps unnecessary. The above procedure is the most commonly used one for the separation of transeinsteinium elements.
Another possible way to separate the trivalent actinides is via solvent extraction chromatography using bis-(2-ethylhexyl) phosphoric acid (abbreviated as HDEHP) as the stationary organic phase and nitric acid as the mobile aqueous phase. The actinide elution sequence is reversed from that of the cation-exchange resin column, so that the heavier actinides elute later. The mendelevium separated by this method has the advantage of being free of organic complexing agent compared to the resin column; the disadvantage is that mendelevium then elutes very late in the elution sequence, after fermium.
Another method to isolate mendelevium exploits the distinct elution properties of Md2+ from those of Es3+ and Fm3+. The initial steps are the same as above, and employs HDEHP for extraction chromatography, but coprecipitates the mendelevium with terbium fluoride instead of lanthanum fluoride. Then, 50 mg of chromium is added to the mendelevium to reduce it to the +2 state in 0.1 M hydrochloric acid with zinc or mercury. The solvent extraction then proceeds, and while the trivalent and tetravalent lanthanides and actinides remain on the column, mendelevium(II) does not and stays in the hydrochloric acid. It is then reoxidized to the +3 state using hydrogen peroxide and then isolated by selective elution with 2 M hydrochloric acid (to remove impurities, including chromium) and finally 6 M hydrochloric acid (to remove the mendelevium). It is also possible to use a column of cationite and zinc amalgam, using 1 M hydrochloric acid as an eluant, reducing Md(III) to Md(II) where it behaves like the alkaline earth metals. Thermochromatographic chemical isolation could be achieved using the volatile mendelevium hexafluoroacetylacetonate: the analogous fermium compound is also known and is also volatile.
|
|