In zoology, megafauna (from Ancient Greek μέγας 'large' and Neo-Latin fauna 'animal life') are large animals. The precise definition of the term varies widely, though a common threshold is approximately , this lower end being centered on humans, with other thresholds being more relative to the sizes of animals in an ecosystem, the spectrum of lower-end thresholds ranging from to . Large body size is generally associated with other traits, such as having a slow rate of reproduction and, in large herbivores, reduced or negligible adult mortality from being killed by predators.
Megafauna species have considerable effects on their local environment, including the suppression of the growth of woody vegetation and a consequent reduction in wildfire frequency. Megafauna also play a role in regulating and stabilizing the abundance of smaller animals.
During the Pleistocene, megafauna were diverse across the globe, with most continental ecosystems exhibiting similar or greater species richness in megafauna as compared to ecosystems in Africa today. During the Late Pleistocene, particularly from around 50,000 years ago onwards, most large mammal species became extinct, including 80% of all mammals greater than , while small animals were largely unaffected. This pronouncedly size-biased extinction is otherwise unprecedented in the geological record. Humans and climatic change have been implicated by most authors as the likely causes, though the relative importance of either factor has been the subject of significant controversy.
Among living animals, the term megafauna is most commonly used for the largest extant taxon terrestrial mammals, which include (but are not limited to) , , , , and larger bovines. Of these five categories of large herbivores, only bovines are presently found outside of Africa and Asia, but all the others were formerly more wide-ranging, with their ranges and populations continually shrinking and decreasing over time. Wild equines are another example of megafauna, but their current ranges are largely restricted to the Old World, specifically in Africa and Asia. Megafaunal species may be categorized according to their dietary type: herbivores (e.g., elephants), carnivores (e.g., ), and omnivores (e.g., ).
Megaherbivores eventually attained a body mass of over . The largest of these, and , have been hindgut fermenters, which are believed to have an advantage over foregut fermenters in terms of being able to accelerate gastrointestinal transit in order to accommodate very large food intakes. A similar trend emerges when rates of increase of maximum body mass per generation for different mammalian are compared (using rates averaged over time scales). Among terrestrial mammals, the fastest rates of increase of body mass0.259 vs. time (in Ma) occurred in (a slope of 2.1), followed by (1.2) and proboscids (1.1), all of which are hindgut fermenters. The rate of increase for (0.74) was about a third of the perissodactyls. The rate for (0.65) was slightly lower yet, while , perhaps constrained by their arboreal habits, had the lowest rate (0.39) among the mammalian groups studied.
Terrestrial mammalian carnivores from several groups (the artiodactyl Andrewsarchus – formerly considered a Mesonychidae, the oxyaenid Sarkastodon, and the carnivorans Amphicyon and Arctodus) all reached a maximum size of about (the carnivoran Arctotherium and the hyaenodontid Simbakubwa may have been somewhat larger). The largest known carnivore, Proborhyaena gigantea, apparently reached , also close to this limit. A similar theoretical maximum size for mammalian carnivores has been predicted based on the metabolic rate of mammals, the energetic cost of obtaining prey, and the maximum estimated rate coefficient of prey intake. It has also been suggested that maximum size for mammalian carnivores is constrained by the stress the humerus can withstand at top running speed.
Analysis of the variation of maximum body size over the last 40 Ma suggests that decreasing temperature and increasing continental land area are associated with increasing maximum body size. The former correlation would be consistent with Bergmann's rule, and might be related to the Thermoregulation advantage of large body mass in cool climates, better ability of larger organisms to cope with seasonality in food supply, or other factors; the latter correlation could be explained in terms of range and resource limitations. However, the two parameters are interrelated (due to sea level drops accompanying increased glaciation), making the driver of the trends in maximum size more difficult to identify.
Among the toothed whales, maximum body size appears to be limited by food availability. Larger size, as in sperm whale and , facilitates deeper diving to access relatively easily-caught, large cephalopod prey in a less competitive environment. Compared to odontocetes, the efficiency of baleen whales' filter feeding scales more favorably with increasing size when planktonic food is dense, making larger sizes more advantageous. The lunge feeding technique of appears to be more energy efficient than the ram feeding of balaenid whales; the latter technique is used with less dense and patchy plankton. The cooling trend in Earth's recent history may have generated more localities of high plankton abundance via wind-driven , facilitating the evolution of gigantic whales.
Cetaceans are not the only marine mammals to reach tremendous sizes. The largest mammal of all time are marine , the largest of which is the southern elephant seal, which can reach more than in length and weigh up to . Other large pinnipeds include the northern elephant seal at , walrus at , and Steller sea lion at . The are another group of marine mammals which adapted to fully aquatic life around the same time as the cetaceans did. Sirenians are closely related to elephants. The largest sirenian was the Steller's sea cow, which reached up to in length and weighed , and was hunted to extinction in the 18th century.
Flightless paleognaths, termed , have traditionally been viewed as representing a lineage separate from that of their small flighted relatives, the Neotropic . However, recent genetic studies have found that tinamous nest well within the ratite tree, and are the sister group of the extinct moa of New Zealand. Similarly, the small kiwi of New Zealand have been found to be the sister group of the extinct of Madagascar. These findings indicate that Flightless bird and gigantism arose independently multiple times among ratites via parallel evolution.
Predatory megafaunal flightless birds were often able to compete with mammals in the early Cenozoic. Later in the Cenozoic, however, they were displaced by advanced carnivorans and died out. In North America, the bathornithids Paracrax and Bathornis were apex predators but became extinct by the Early Miocene. In South America, the related shared the dominant predatory niches with metatherian Sparassodonta during most of the Cenozoic but declined and ultimately went extinct after eutherian predators arrived from North America (as part of the Great American Interchange) during the Pliocene. In contrast, large herbivorous flightless ratites have survived to the present.
However, none of the flightless birds of the Cenozoic, including the predatory Brontornis, possibly omnivorous Dromornis stirtoni or herbivorous Aepyornis, ever grew to masses much above ; thus, they never attained the size of the largest mammalian carnivores, let alone that of the largest mammalian herbivores. It has been suggested that the increasing thickness of avian eggshells in proportion to egg mass with increasing egg size places an upper limit on the size of birds. The largest species of Dromornis, D. stirtoni, may have gone extinct after it attained the maximum avian body mass and was then outcompeted by marsupial that evolved to sizes several times larger.
Some earlier aquatic Testudines, e.g. the marine Archelon of the Cretaceous and freshwater Stupendemys of the Miocene, were considerably larger, weighing more than .
Various theories have attributed the wave of extinctions to human hunting, climate change, disease, extraterrestrial impact, competition from other animals or other causes. However, this extinction near the end of the Pleistocene was just one of a series of megafaunal extinction pulses that have occurred during the last 50,000 years over much of the Earth's surface, with Africa and Asia (where the local megafauna had a chance to evolve alongside modern humans) being comparatively less affected. The latter areas did suffer gradual attrition of megafauna, particularly of the slower-moving species (a class of vulnerable megafauna epitomized by ), over the last several million years.
Outside the mainland of Afro-Eurasia, these megafaunal extinctions followed a highly distinctive landmass-by-landmass pattern that closely parallels the spread of humans into previously uninhabited regions of the world, and which shows no overall correlation with climatic history (which can be visualized with plots over recent geological time periods of climate markers such as marine oxygen isotopes or atmospheric carbon dioxide levels). Australia and nearby islands (e.g., Flores) were struck first around 46,000 years ago, followed by Tasmania about 41,000 years ago (after formation of a land bridge to Australia about 43,000 years ago). The role of humans in the extinction of Australia and New Guinea's megafauna has been disputed, with multiple studies showing a decline in the number of species prior to the arrival of humans on the continent and the absence of any evidence of human predation; the impact of climate change has instead been cited for their decline. Similarly, Japan lost most of its megafauna apparently about 30,000 years ago, North America 13,000 years ago and South America about 500 years later, Cyprus 10,000 years ago, the Antilles 6,000 years ago, New Caledonia and nearby islands 3,000 years ago, Madagascar 2,000 years ago, New Zealand 700 years ago, the Mascarenes 400 years ago, and the Commander Islands 250 years ago. Nearly all of the world's isolated islands could furnish similar examples of extinctions occurring shortly after the arrival of , though most of these islands, such as the Hawaiian Islands, never had terrestrial megafauna, so their extinct fauna were smaller, but still displayed island gigantism.
An analysis of the timing of Holarctic megafaunal extinctions and extirpations over the last 56,000 years has revealed a tendency for such events to cluster within , periods of abrupt warming, but only when humans were also present. Humans may have impeded processes of migration and recolonization that would otherwise have allowed the megafaunal species to adapt to the climate shift. In at least some areas, interstadials were periods of expanding human populations.
An analysis of Sporormiella fungal spores (which derive mainly from the dung of megaherbivores) in swamp sediment cores spanning the last 130,000 years from Lynch's Crater in Queensland, Australia, showed that the megafauna of that region virtually disappeared about 41,000 years ago, at a time when climate changes were minimal; the change was accompanied by an increase in charcoal, and was followed by a transition from rainforest to fire-tolerant sclerophyll vegetation. The high-resolution chronology of the changes supports the hypothesis that human hunting alone eliminated the megafauna, and that the subsequent change in flora was most likely a consequence of the elimination of browsers and an increase in fire. The increase in fire lagged the disappearance of megafauna by about a century, and most likely resulted from accumulation of fuel once browsing stopped. Over the next several centuries grass increased; sclerophyll vegetation increased with a lag of another century, and a sclerophyll forest developed after about another thousand years. During two periods of climate change about 120,000 and 75,000 years ago, sclerophyll vegetation had also increased at the site in response to a shift to cooler, drier conditions; neither of these episodes had a significant impact on megafaunal abundance. Similar conclusions regarding the culpability of human hunters in the disappearance of Pleistocene megafauna were derived from high-resolution chronologies obtained via an analysis of a large collection of eggshell fragments of the flightless Australian bird Genyornis newtoni, from analysis of Sporormiella fungal spores from a lake in eastern North America and from study of deposits of Shasta ground sloth dung left in over half a dozen caves in the American Southwest.
Continuing human hunting and environmental disturbance has led to additional megafaunal extinctions in the recent past, and has created a serious danger of further extinctions in the near future (see examples below). Direct killing by humans, primarily for meat or other body parts, is the most significant factor in contemporary megafaunal decline.
A number of other Extinction event occurred earlier in Earth's geologic history, in which some or all of the megafauna of the time also died out. Famously, in the Cretaceous–Paleogene extinction event, the non-avian dinosaurs and most other giant reptiles were eliminated. However, the earlier mass extinctions were more global and not so selective for megafauna; i.e., many species of other types, including plants, marine invertebrates and plankton, went extinct as well. Thus, the earlier events must have been caused by more generalized types of disturbances to the biosphere.
Recent studies have indicated that the extinction of megafaunal herbivores may have caused a reduction in atmospheric methane. This hypothesis is relatively new. One study examined the methane emissions from the American bison that occupied the Great Plains of North America before contact with European settlers. The study estimated that the removal of the bison caused a decrease of as much as 2.2 million tons per year. Another study examined the change in the methane concentration in the atmosphere at the end of the Pleistocene epoch after the extinction of megafauna in the Americas. After early humans migrated to the Americas about 13,000 Before Present, their hunting and other associated ecological impacts led to the extinction of many megafaunal species there. Calculations suggest that this extinction decreased methane production by about 9.6 million tons per year. This suggests that the absence of megafaunal methane emissions may have contributed to the abrupt climatic cooling at the onset of the Younger Dryas. The decrease in atmospheric methane that occurred at that time, as recorded in , was 2 to 4 times more rapid than any other decrease in the last half million years, suggesting that an unusual mechanism was at work.
=== Other extinct Cenozoic megafauna ===
===Extant===
|
|