Lysyl oxidase ( LOX), also known as protein-lysine 6-oxidase, is an enzyme that, in humans, is encoded by the LOX gene. It catalyzes the conversion of lysine residues into its aldehyde derivative allysine. Allysine form in extracellular matrix proteins. Inhibition of lysyl oxidase can cause osteolathyrism, but, at the same time, its upregulation by tumor cells may promote metastasis of the existing tumor, causing it to become malignant and .
In humans, the LOX gene is located on chromosome 5 q23.3-31.2. The DNA sequence encodes a polypeptide of 417 amino acids, the first 21 residues of which constitute a signal peptide, with a weight of approximately 32 kDa. The carboxyterminus contains the active copper (II) ion, lysine, tyrosine, and cysteine residues that comprise the catalytically active site. The three-dimensional structure of human lysyl oxidase has not yet been resolved.
Complex cross-links are formed in collagen ( derived from three lysine residues) and in elastin ( derived from four lysine residues) that differ in structure.
The importance of lysyl oxidase-derived cross-linking was established from animal studies in which lysyl oxidase was inhibited either by nutritional copper-deficiency or by supplementation of diets with β-aminopropionitrile (BAPN), an inhibitor of lysyl oxidase. This resulted in lathyrism, characterized by poor bone formation and strength, hyperextensible skin, weak ligaments, and increased occurrence of aortic aneurysms. These abnormalities correlated well with decreased cross-linking of collagen and elastin.
Developmentally, reduced lysyl oxidase activity have been implicated in Menkes disease and occipital horn syndrome, two X-linked recessive disorders characterized by a mutation in a gene coding for a protein involved in copper transport. Thus, not only is LOX crucial to cardiovascular development, it plays a major role in connective tissue development and may also be important in neurological function.
Lysyl oxidase has also proven crucial to the development of the respiratory system and the skin, as collagen and elastin represent 50-60% of the composition of the lung, and 75% of the skin. In Lox homozygous null models ( Lox -/-), the activity of LOX was reduced by up to 80%, and the phenotype of the lungs resembles those of patients with emphysema and dilated distal airways.
Lysyl oxidase plays a crucial role in the commitment step of adipocyte, or fat cell, formation from pluripotent during development. Its absence may lead to defects in the transforming growth factor beta superfamily of proteins, which control cell growth and differentiation.
In fact, recent research has shown overexpression of LOX as crucial to promoting tumor growth and metastasis in several cancers, including breast cancer, non-small cell lung cancer, and colorectal cancer.
LOX expression was also detected in megakaryocytes, or bone marrow cells responsible for the production of platelets. Data derived from a mouse model of myelofibrosis implicated LOX in bone marrow fibrosis.
In a rodent model of breast cancer, a small-molecule or antibody inhibitors of LOX abolished metastasis. LOX secreted by hypoxic breast tumor cells crosslinks collagen in the basement membrane and is essential for CD11b+ myeloid cell recruitment. CD11b+ cells in turn adhere to crosslinked collagen and produce matrix metalloproteinase-2, which cleaves collagen, enhancing the invasion of metastasizing tumor cells. In contrast, LOX inhibition prevents CD11b+ cell recruitment and metastatic growth.
In cells lacking TGF-β receptors, a deficiency that is characteristic of lung cancer, lysyl oxidase is found in high concentrations. LOX immunostaining has revealed that high LOX expression is associated with high extent of carcinoma invasion in samples obtained from surgically removed lung . Additionally, LOX expression is an indicator of 5-year survival in patients, with a 71% chance of survival for patients with low LOX levels, compared to 43% for patients with high LOX levels. Thus, upregulation of lysyl oxidase is a predictor of poor prognosis in early-stage adenocarcinoma patients.
Lysyl oxidase has been newly implicated in tumor angiogenesis, or blood vessel formation, both in vivo and in vitro. Subcutaneous tumor-derived LOX was shown to increase vascular endothelial growth factor (VEGF) expression and secretion, which then promotes angiogenesis by phosphorylation of protein kinase B, or Akt, through platelet-derived growth factor receptor β (PDGFRB). High levels of LOX were associated with high blood vessel density in patient samples. Clinically relevant LOX inhibitors may help slow cancer progression by downregulating crucial growth factors that promote solid tumor progression.
Hence, inhibitors of the LOX enzyme may be useful in preventing angiogenesis, tumor progression, and metastasis as well as treating other fibrotic disease involving remodeling of the extracellular matrix, including neurodegenerative and cardiovascular diseases.
|
|