Leptospermone is a chemical compound (a β-triketone) produced by some members of the myrtle family ( Myrtaceae), such as Callistemon citrinus (Lemon Bottlebrush), a shrub native to Australia, and Leptospermum scoparium (Manuka), a New Zealand tree from which it gets its name. Modification of this Allelopathy chemical to produce mesotrione led to the commercialization of derivative compounds as HPPD inhibitor herbicides.
Leptospermone was optimized into thousands of compounds. Several were extremely effective but were too toxic, environmentally persistent or not selective enough. There are now several members of the triketone class of HPPD inhibitor herbicides on the market.
Biochemically, the plants take a different approach. Despite the fact that the biochemical synthesis has not been specifically investigated, it is clear that leptospermone is not an oxidized terpene (or specifically a sesquiterpene, ei. C15) as the cyclisation of farnesyl pyrophosphate cannot produce two dimethylate carbons that are separated by a single carbon nor would this be consistent with the natural occurrence of similar compounds with different keto-aryl side-chains in the members of the Myrtaceae ( eg. flavesone, papuanone, isoleptospermone and grandiflorone). Phloroglucinol is biosynthesized in a single step from malonyl-CoA and could be the intermediate, but other routes of biosynthesis may be possible, such as via isobutyryl-CoA, the result of the decarboxylative condensation of ketoisovalerate (ketone form of valine) (cf. ).
Uses
|
|