A lanthanide () is any of the 14 Metal with 57–70, from lanthanum through ytterbium. The IUPAC recommended standard name of this series is lanthanoid (). In the periodic table, they fill the 4f orbitals. Lanthanide , Encyclopædia Britannica on-line Lutetium (element 71) is also sometimes considered a lanthanide, despite being a d-block element and a transition metal.
The informal chemical symbol Ln is used in general discussions of lanthanide chemistry to refer to any lanthanide. All but one of the lanthanides are f-block elements, corresponding to the filling of the 4f electron shell. Lutetium is a d-block element (thus also a transition metal), and on this basis its inclusion has been questioned; however, like its congeners scandium and yttrium in group 3, it behaves similarly to the other 14. The term rare-earth element or rare-earth metal is often used to include the stable group 3 elements Sc, Y, and Lu in addition to the 4f elements. F Block Elements, Oxidation States, Lanthanides and Actinides . Chemistry.tutorvista.com. Retrieved on 14 December 2017. All lanthanide elements form trivalent cations, Ln3+, whose chemistry is largely determined by the ionic radius, which decreases steadily from lanthanum (La) to lutetium (Lu).
In presentations of the periodic table, the f-block elements are customarily shown as two additional rows below the main body of the table. This convention is entirely a matter of aesthetics and formatting practicality; a rarely used wide-formatted periodic table inserts the 4f and 5f series in their proper places, as parts of the table's sixth and seventh rows (periods), respectively.
The word reflects their property of "hiding" behind each other in minerals. The term derives from lanthanum, first discovered in 1838, at that time a so-called new rare-earth element "lying hidden" or "escaping notice" in a cerium mineral,"lanthanum". OED2 v. 1.14 on CD-Rom. OUP, 1994. and it is an irony that lanthanum was later identified as the first in an entire series of chemically similar elements and gave its name to the whole series.
These elements are called lanthanides because the elements in the series are chemically similar to lanthanum. Because "lanthanide" means "like lanthanum", it has been argued that lanthanum cannot logically be a lanthanide, but the International Union of Pure and Applied Chemistry (IUPAC) acknowledges its inclusion based on common usage. The current IUPAC recommendation is that the name lanthanoid be used rather than lanthanide, as the suffix "-ide" is preferred for negative , whereas the suffix "-oid" indicates similarity to one of the members of the containing family of elements.
** Sm has a close packed structure like most of the lanthanides but has an unusual 9 layer repeat
Gschneider and Daane (1988) attribute the trend in melting point which increases across the series, (lanthanum (920 °C) – lutetium (1622 °C)) to the extent of hybridization of the 6s, 5d, and 4f orbitals. The hybridization is believed to be at its greatest for cerium, which has the lowest melting point of all, 795 °C.Krishnamurthy, Nagaiyar and Gupta, Chiranjib Kumar (2004) Extractive Metallurgy of Rare Earths, CRC Press,
The lanthanide metals are soft; their hardness increases across the series. Europium stands out, as it has the lowest density in the series at 5.24 g/cm3 and the largest metallic radius in the series at 208.4 pm. It can be compared to barium, which has a metallic radius of 222 pm. It is believed that the metal contains the larger Eu2+ ion and that there are only two electrons in the conduction band. Ytterbium also has a large metallic radius, and a similar explanation is suggested.
The resistivity of the lanthanide metals are relatively high, ranging from 29 to 134 μΩ·cm. These values can be compared to a good conductor such as aluminium, which has a resistivity of 2.655 μΩ·cm.
With the exceptions of La, Yb, and Lu (which have no unpaired f electrons), the lanthanides are strongly paramagnetic, and this is reflected in their magnetic susceptibilities. Gadolinium becomes ferromagnetic at below 16 °C (Curie point). The other heavier lanthanides – terbium, dysprosium, holmium, erbium, thulium, and ytterbium – become ferromagnetic at much lower temperatures.Cullity, B. D. and Graham, C. D. (2011) Introduction to Magnetic Materials, John Wiley & Sons,
* Not including initial Xe core
f → f transitions are symmetry forbidden (or Laporte-forbidden), which is also true of . However, transition metals are able to use vibronic coupling to break this rule. The valence orbitals in lanthanides are almost entirely non-bonding and as such little effective vibronic coupling takes, hence the spectra from f → f transitions are much weaker and narrower than those from d → d transitions. In general this makes the colors of lanthanide complexes far fainter than those of transition metal complexes.
Measuring the magnetic moment can be used to investigate the 4f electron configuration, and this is a useful tool in providing an insight into the chemical bonding. The lanthanide contraction, i.e. the reduction in size of the Ln3+ ion from La3+ (103 pm) to Lu3+ (86.1 pm), is often explained by the poor shielding of the 5s and 5p electrons by the 4f electrons.
In terms of reduction potentials, the Ln0/3+ couples are nearly the same for all lanthanides, ranging from −1.99 (for Eu) to −2.35 V (for Pr). Thus these metals are highly reducing, with reducing power similar to alkaline earth metals such as Mg (−2.36 V).
The sum of the first two ionization energies for europium, 1632 kJ·mol−1 can be compared with that of barium 1468.1 kJ·mol−1 and europium's third ionization energy is the highest of the lanthanides. The sum of the first two ionization energies for ytterbium are the second lowest in the series and its third ionization energy is the second highest. The high third ionization energy for Eu and Yb correlate with the half filling 4f7 and complete filling 4f14 of the 4f subshell, and the stability afforded by such configurations due to exchange energy. Europium and ytterbium form salt like compounds with Eu2+ and Yb2+, for example the salt like dihydrides. Both europium and ytterbium dissolve in liquid ammonia forming solutions of Ln2+(NH3)x again demonstrating their similarities to the alkaline earth metals.
The relative ease with which the 4th electron can be removed in cerium and (to a lesser extent praseodymium) indicates why Ce(IV) and Pr(IV) compounds can be formed, for example CeO2 is formed rather than Ce2O3 when cerium reacts with oxygen. Also Tb has a well-known IV state, as removing the 4th electron in this case produces a half-full 4f7 configuration.
The additional stable valences for Ce and Eu mean that their abundances in rocks sometimes varies significantly relative to the other rare earth elements: see cerium anomaly and europium anomaly.
The low probability of the 4f electrons existing at the outer region of the atom or ion permits little effective overlap between the Atomic orbitals of a lanthanide ion and any binding ligand. Thus lanthanide complexes typically have little or no covalent bond character and are not influenced by orbital geometries. The lack of orbital interaction also means that varying the metal typically has little effect on the complex (other than size), especially when compared to transition metals. Complexes are held together by weaker ionic bond forces which are omni-directional and thus the ligands alone dictate the symmetry and coordination of complexes. Steric effects therefore dominate, with coordinative saturation of the metal being balanced against inter-ligand repulsion. This results in a diverse range of coordination geometries, many of which are irregular, and also manifests itself in the highly fluxional nature of the complexes. As there is no energetic reason to be locked into a single geometry, rapid intramolecular and intermolecular ligand exchange will take place. This typically results in complexes that rapidly fluctuate between all possible configurations.
Many of these features make lanthanide complexes effective . Hard Lewis acids are able to polarise bonds upon coordination and thus alter the electrophilicity of compounds, with a classic example being the Luche reduction. The large size of the ions coupled with their labile ionic bonding allows even bulky coordinating species to bind and dissociate rapidly, resulting in very high turnover rates; thus excellent yields can often be achieved with loadings of only a few mol%. The lack of orbital interactions combined with the lanthanide contraction means that the lanthanides change in size across the series but that their chemistry remains much the same. This allows for easy tuning of the steric environments and examples exist where this has been used to improve the catalytic activity of the complex and change the nuclearity of metal clusters.
Despite this, the use of lanthanide coordination complexes as homogeneous catalysts is largely restricted to the laboratory and there are currently few examples them being used on an industrial scale. Lanthanides exist in many forms other than coordination complexes and many of these are industrially useful. In particular lanthanide are used as heterogeneous catalysts in various industrial processes.
Ce(IV) in ceric ammonium nitrate is a useful oxidizing agent. The Ce(IV) is the exception owing to the tendency to form an unfilled f shell. Otherwise tetravalent lanthanides are rare. However, recently Tb(IV) and Pr(IV) complexes have been shown to exist.
Lanthanide metals react exothermically with hydrogen to form LnH2, dihydrides. With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds), they form black, pyrophoricity, conducting compounds where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. Further hydrogenation produces a trihydride which is non-stoichiometric, non-conducting, more salt like. The formation of trihydride is associated with and increase in 8–10% volume and this is linked to greater localization of charge on the hydrogen atoms which become more anionic (H− hydride anion) in character.
The trihalides were important as pure metal can be prepared from them. In the gas phase the trihalides are planar or approximately planar, the lighter lanthanides have a lower % of dimers, the heavier lanthanides a higher proportion. The dimers have a similar structure to Al2Cl6.
Some of the dihalides are conducting while the rest are insulators. The conducting forms can be considered as LnIII electride compounds where the electron is delocalised into a conduction band, Ln3+ (X−)2(e−). All of the diiodides have relatively short metal-metal separations. The CuTi2 structure of the lanthanum, cerium and praseodymium diiodides along with HP-NdI2 contain 44 nets of metal and iodine atoms with short metal-metal bonds (393-386 La-Pr). these compounds should be considered to be two-dimensional metals (two-dimensional in the same way that graphite is). The salt-like dihalides include those of Eu, Dy, Tm, and Yb. The formation of a relatively stable +2 oxidation state for Eu and Yb is usually explained by the stability (exchange energy) of half filled (f7) and fully filled f14. GdI2 possesses the layered MoS2 structure, is ferromagnetic and exhibits colossal magnetoresistance.
The sesquihalides Ln2X3 and the Ln7I12 compounds listed in the table contain metal clusters, discrete Ln6I12 clusters in Ln7I12 and condensed clusters forming chains in the sesquihalides. Scandium forms a similar cluster compound with chlorine, Sc7Cl12 Unlike many transition metal clusters these lanthanide clusters do not have strong metal-metal interactions and this is due to the low number of valence electrons involved, but instead are stabilised by the surrounding halogen atoms.
LaI and TmI are the only known monohalides. LaI, prepared from the reaction of LaI3 and La metal, it has a NiAs type structure and can be formulated La3+ (I−)(e−)2. TmI is a true Tm(I) compound, however it is not isolated in a pure state.
Cerium forms a stoichiometric dioxide, CeO2, where cerium has an oxidation state of +4. CeO2 is basic and dissolves with difficulty in acid to form Ce4+ solutions, from which CeIV salts can be isolated, for example the hydrated nitrate Ce(NO3)4.5H2O. CeO2 is used as an oxidation catalyst in catalytic converters. Praseodymium and terbium form non-stoichiometric oxides containing LnIV, although more extreme reaction conditions can produce stoichiometric (or near stoichiometric) PrO2 and TbO2.
Europium and ytterbium form salt-like monoxides, EuO and YbO, which have a rock salt structure. EuO is ferromagnetic at low temperatures, and is a semiconductor with possible applications in spintronics.Nasirpouri, Farzad and Nogaret, Alain (eds.) (2011) Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications. World Scientific. A mixed EuII/EuIII oxide Eu3O4 can be produced by reducing Eu2O3 in a stream of hydrogen. Neodymium and samarium also form monoxides, but these are shiny conducting solids, although the existence of samarium monoxide is considered dubious.
All of the lanthanides form hydroxides, Ln(OH)3. With the exception of lutetium hydroxide, which has a cubic structure, they have the hexagonal UCl3 structure. The hydroxides can be precipitated from solutions of LnIII. They can also be formed by the reaction of the sesquioxide, Ln2O3, with water, but although this reaction is thermodynamically favorable it is kinetically slow for the heavier members of the series. Fajans' rules indicate that the smaller Ln3+ ions will be more polarizing and their salts correspondingly less ionic. The hydroxides of the heavier lanthanides become less basic, for example Yb(OH)3 and Lu(OH)3 are still basic hydroxides but will dissolve in hot concentrated sodium hydroxide.
Polymorphism is common amongst the sesquisulfides. The colors of the sesquisulfides vary metal to metal and depend on the polymorphic form. The colors of the γ-sesquisulfides are La2S3, white/yellow; Ce2S3, dark red; Pr2S3, green; Nd2S3, light green; Gd2S3, sand; Tb2S3, light yellow and Dy2S3, orange. The shade of γ-Ce2S3 can be varied by doping with Na or Ca with hues ranging from dark red to yellow, and Ce2S3 based pigments are used commercially and are seen as low toxicity substitutes for cadmium based pigments.
All of the lanthanides form monochalcogenides, LnQ, (Q= S, Se, Te). The majority of the monochalcogenides are conducting, indicating a formulation LnIIIQ2−(e-) where the electron is in conduction bands. The exceptions are SmQ, EuQ and YbQ which are semiconductors or insulators but exhibit a pressure induced transition to a conducting state.
Compounds LnQ2 are known but these do not contain LnIV but are LnIII compounds containing polychalcogenide anions.Holleman, p. 1944.
Oxysulfides Ln2O2S are well known, they all have the same structure with 7-coordinate Ln atoms, and 3 sulfur and 4 oxygen atoms as near neighbours.Liu, Guokui and Jacquier, Bernard (eds) (2006) Spectroscopic Properties of Rare Earths in Optical Materials, Springer
Doping these with other lanthanide elements produces phosphors. As an example, gadolinium oxysulfide, Gd2O2S doped with Tb3+ produces visible photons when irradiated with high energy X-rays and is used as a scintillator in flat panel detectors.
When mischmetal, an alloy of lanthanide metals, is added to molten steel to remove oxygen and sulfur, stable oxysulfides are produced that form an immiscible solid.
The other pnictides phosphorus, arsenic, antimony and bismuth also react with the lanthanide metals to form monopnictides, LnQ, where Q = P, As, Sb or Bi. Additionally a range of other compounds can be produced with varying stoichiometries, such as LnP2, LnP5, LnP7, Ln3As, Ln5As3 and LnAs2.
The dicarbides with exception of EuC2, are metallic conductors with the calcium carbide structure and can be formulated as Ln3+C22−(e–). The C-C bond length is longer than that in calcium carbide, which contains the C22− anion, indicating that the antibonding orbitals of the C22− anion are involved in the conduction band. These dicarbides hydrolyse to form hydrogen and a mixture of hydrocarbons. EuC2 and to a lesser extent YbC2 hydrolyse differently producing a higher percentage of acetylene (ethyne).
The sesquicarbides, Ln2C3 can be formulated as Ln4(C2)3. These compounds adopt the Pu2C3 structure which has been described as having C22− anions in bisphenoid holes formed by eight near Ln neighbours. The C-C bond is less elongated than in the dicarbides, with the exception of Ce2C3, indicating that the delocalized metal electrons do not fill C-C antibonding orbitals.
Other carbon rich stoichiometries are known for some lanthanides. Ln3C4 (Ho-Lu) containing C, C2 and C3 units; Ln4C7 (Ho-Lu) contain C atoms and C3 units and Ln4C5 (Gd-Ho) containing C and C2 units.
Metal rich carbides contain interstitial C atoms and no C2 or C3 units. These are Ln4C3 (Tb and Lu); Ln2C (Dy, Ho, Tm) and Ln3C (Sm-Lu). These hydrolyze to methane.
Many methods of producing lanthanide borides have been used, amongst them are direct reaction of the elements; the reduction of Ln2O3 with boron; reduction of boron oxide, B2O3, and Ln2O3 together with carbon; reduction of metal oxide with boron carbide, B4C.Refractory Materials, Volume 6-IV: 1976, ed. Allen Alper, Elsevier, Zuckerman, J. J. (2009) Inorganic Reactions and Methods, The Formation of Bonds to Group-I, -II, and -IIIb Elements, Vol. 13, John Wiley & Sons, Producing high purity samples has proved to be difficult. Single crystals of the higher borides have been grown in a low melting metal (e.g. Sn, Cu, Al).
Diborides, LnB2, have been reported for Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. All have the same, AlB2, structure containing a graphitic layer of boron atoms. Low temperature ferromagnetic transitions for Tb, Dy, Ho and Er. TmB2 is ferromagnetic at 7.2 K.
Tetraborides, LnB4 have been reported for all of the lanthanides except EuB4, all have the same UB4 structure. The structure has a boron sub-lattice consists of chains of octahedral B6 clusters linked by boron atoms. The unit cell decreases in size successively from LaB4 to LuB4. The tetraborides of the lighter lanthanides melt with decomposition to LnB6. Attempts to make EuB4 have failed. The LnB4 are good conductors and typically antiferromagnetic.
Hexaborides, LnB6 have been reported for all of the lanthanides. They all have the CaB6 structure, containing B6 clusters. They are non-stoichiometric due to cation defects. The hexaborides of the lighter lanthanides (La – Sm) melt without decomposition, EuB6 decomposes to boron and metal and the heavier lanthanides decompose to LnB4 with exception of YbB6 which decomposes forming YbB12. The stability has in part been correlated to differences in volatility between the lanthanide metals. In EuB6 and YbB6 the metals have an oxidation state of +2 whereas in the rest of the lanthanide hexaborides it is +3. This rationalises the differences in conductivity, the extra electrons in the LnIII hexaborides entering conduction bands. EuB6 is a semiconductor and the rest are good conductors. LaB6 and CeB6 are thermionic emitters, used, for example, in scanning electron microscopes.
Dodecaborides, LnB12, are formed by the heavier smaller lanthanides, but not by the lighter larger metals, La – Eu. With the exception YbB12 (where Yb takes an intermediate valence and is a Kondo insulator), the dodecaborides are all metallic compounds. They all have the UB12 structure containing a 3 dimensional framework of cubooctahedral B12 clusters.
The higher boride LnB66 is known for all lanthanide metals. The composition is approximate as the compounds are non-stoichiometric. They all have similar complex structure with over 1600 atoms in the unit cell. The boron cubic sub lattice contains super icosahedra made up of a central B12 icosahedra surrounded by 12 others, B12(B12)12. Other complex higher borides LnB50 (Tb, Dy, Ho Er Tm Lu) and LnB25 are known (Gd, Tb, Dy, Ho, Er) and these contain boron icosahedra in the boron framework.
Crystal field splitting is rather small for the lanthanide ions and is less important than spin–orbit coupling in regard to energy levels. Transitions of electrons between f orbitals are forbidden by the Laporte rule. Furthermore, because of the "buried" nature of the f orbitals, coupling with molecular vibrations is weak. Consequently, the spectra of lanthanide ions are rather weak and the absorption bands are similarly narrow. Glass containing holmium oxide and holmium oxide solutions (usually in perchloric acid) have sharp optical absorption peaks in the spectral range 200–900 nm and can be used as a wavelength calibration standard for Monochromator, and are available commercially.
As f-f transitions are Laporte-forbidden, once an electron has been excited, decay to the ground state will be slow. This makes them suitable for use in as it makes the population inversion easy to achieve. The is one that is widely used. Europium-doped yttrium vanadate was the first red phosphor to enable the development of color television screens. Lanthanide ions have notable luminescent properties due to their unique 4f orbitals. Laporte forbidden f-f transitions can be activated by excitation of a bound "antenna" ligand. This leads to sharp emission bands throughout the visible, NIR, and IR and relatively long luminescence lifetimes.
There are also lanthanide-bearing minerals based on group-2 elements, such as yttrocalcite, yttrocerite and yttrofluorite, which vary in content of yttrium, cerium, lanthanum and others.Rocks & Minerals, A Guide To Field Identification, Sorrell, St Martin's Press 1972, 1995, pp 118 (Halides), 228 (Carbonates) Other lanthanide-bearing minerals include bastnäsite, florencite, chernovite, perovskite, xenotime, cerite, gadolinite, lanthanite, fergusonite, polycrase, blomstrandine, håleniusite, miserite, loparite, lepersonnite, euxenite, all of which have a range of relative element concentration and may be denoted by a predominating one, as in monazite-(Ce). Group 3 elements do not occur as Native element minerals in the fashion of gold, silver, tantalum and many others on Earth, but may occur in lunar soil. Very rare halides of cerium, lanthanum, and presumably other lanthanides, and garnets are also known to exist.Minearls of the World, Johnsen, 2000
The lanthanide contraction is responsible for the great geochemical divide that splits the lanthanides into light and heavy-lanthanide enriched minerals, the latter being almost inevitably associated with and dominated by yttrium. This divide is reflected in the first two "rare earths" that were discovered: yttria (1794) and ceria (1803). The geochemical divide has put more of the light lanthanides in the Earth's crust, but more of the heavy members in the Earth's mantle. The result is that although large rich ore-bodies are found that are enriched in the light lanthanides, correspondingly large ore-bodies for the heavy members are few. The principal ores are monazite and bastnäsite. Monazite sands usually contain all the lanthanide elements, but the heavier elements are lacking in bastnäsite. The lanthanides obey the Oddo–Harkins rule – odd-numbered elements are less abundant than their even-numbered neighbors.
Three of the lanthanide elements have radioactive isotopes with long half-lives (138La, 147Sm and 176Lu) that can be used to date minerals and rocks from Earth, the Moon and meteorites.There exist other naturally occurred radioactive isotopes of lanthanides with long half-lives (144Nd, 150Nd, 148Sm, 151Eu, 152Gd) but they are not used as chronometers. Promethium is effectively a man-made element, as all its isotopes are radioactive with half-lives shorter than 20 years.
The devices lanthanide elements are used in include superconductors, samarium-cobalt and Neodymium magnet high-flux rare-earth magnets, , electronic polishers, refining catalysts and hybrid car components (primarily batteries and magnets). Lanthanide ions are used as the active ions in luminescent materials used in optoelectronics applications, most notably the laser. Erbium-doped fiber amplifiers are significant devices in optical-fiber communication systems. Phosphors with lanthanide dopants are also widely used in cathode-ray tube technology such as television sets. The earliest color television CRTs had a poor-quality red; europium as a phosphor dopant made good red phosphors possible. Yttrium iron garnet (YIG) spheres can act as tunable microwave resonators.
Lanthanide oxides are mixed with tungsten to improve their high temperature properties for TIG welding, replacing thorium, which was mildly hazardous to work with. Many defense-related products also use lanthanide elements such as night-vision goggles and rangefinders. The SPY-1 radar used in some Aegis equipped warships, and the hybrid propulsion system of s all use rare earth magnets in critical capacities.
The price for lanthanum oxide used in fluid catalytic cracking has risen from $5 per kilogram in early 2010 to $140 per kilogram in June 2011.
Most lanthanides are widely used in , and as (co-)dopants in doped-fiber optical amplifiers; for example, in Er-doped fiber amplifiers, which are used as repeaters in the terrestrial and submarine fiber-optic transmission links that carry internet traffic. These elements deflect ultraviolet and infrared radiation and are commonly used in the production of sunglass lenses. Other applications are summarized in the following table:
The complex Gd(DOTA) is used in magnetic resonance imaging.
Mixtures containing all of the lanthanides operating as a single-atom catalysts have been proposed for the electroreduction of carbon dioxide (CO2) to carbon monoxide (CO) with a faradaic efficiency greater than 90%.
Some applications depend on the unique luminescence properties of lanthanide chelates or .
The biological fluids or serum commonly used in these research applications contain many compounds and proteins which are naturally fluorescent. Therefore, the use of conventional, steady-state fluorescence measurement presents serious limitations in assay sensitivity. Long-lived fluorophores, such as lanthanides, combined with time-resolved detection (a delay between excitation and emission detection) minimizes prompt fluorescence interference.
Time-resolved fluorometry (TRF) combined with Förster resonance energy transfer (FRET) offers a powerful tool for drug discovery researchers: Time-Resolved Förster Resonance Energy Transfer or TR-FRET. TR-FRET combines the low background aspect of TRF with the homogeneous assay format of FRET. The resulting assay provides an increase in flexibility, reliability and sensitivity in addition to higher throughput and fewer false positive/false negative results.
This method involves two fluorophores: a donor and an acceptor. Excitation of the donor fluorophore (in this case, the lanthanide ion complex) by an energy source (e.g. flash lamp or laser) produces an energy transfer to the acceptor fluorophore if they are within a given proximity to each other (known as the Förster's radius). The acceptor fluorophore in turn emits light at its characteristic wavelength.
The two most commonly used lanthanides in life science assays are shown below along with their corresponding acceptor dye as well as their excitation and emission wavelengths and resultant Stokes shift (separation of excitation and emission wavelengths).
One of the specific elements from the lanthanide group that has been tested and used is cerium (Ce). There have been studies that use a protein-cerium complex to observe the effect of cerium on the cancer cells. The hope was to inhibit cell proliferation and promote cytotoxicity. Transferrin receptors in cancer cells, such as those in breast cancer cells and epithelial cervical cells, promote the cell proliferation and malignancy of the cancer. Transferrin is a protein used to transport iron into the cells and is needed to aid the cancer cells in DNA replication. Transferrin acts as a growth factor for the cancerous cells and is dependent on iron. Cancer cells have much higher levels of transferrin receptors than normal cells and are very dependent on iron for their proliferation.
In the field of magnetic resonance imaging (MRI), compounds containing gadolinium are utilized extensively.
The photobiological characteristics, anticancer, anti-leukemia, and anti-HIV activities of the lanthanides with coumarin and its related compounds are demonstrated by the biological activities of the complex.
Cerium has shown results as an anti-cancer agent due to its similarities in structure and biochemistry to iron. Cerium may bind in the place of iron on to the transferrin and then be brought into the cancer cells by transferrin-receptor mediated endocytosis. The cerium binding to the transferrin in place of the iron inhibits the transferrin activity in the cell. This creates a toxic environment for the cancer cells and causes a decrease in cell growth. This is the proposed mechanism for cerium's effect on cancer cells, though the real mechanism may be more complex in how cerium inhibits cancer cell proliferation. Specifically in HeLa cancer cells studied in vitro, cell viability was decreased after 48 to 72 hours of cerium treatments. Cells treated with just cerium had decreases in cell viability, but cells treated with both cerium and transferrin had more significant inhibition for cellular activity.
Another specific element that has been tested and used as an anti-cancer agent is lanthanum, more specifically lanthanum chloride (LaCl3). The lanthanum ion is used to affect the levels of let-7a and microRNAs miR-34a in a cell throughout the cell cycle. When the lanthanum ion was introduced to the cell in vivo or in vitro, it inhibited the rapid growth and induced apoptosis of the cancer cells (specifically cervical cancer cells). This effect was caused by the regulation of the let-7a and microRNAs by the lanthanum ions. The mechanism for this effect is still unclear but it is possible that the lanthanum is acting in a similar way as the cerium and binding to a ligand necessary for cancer cell proliferation.
In the field of magnetic resonance imaging (MRI), compounds containing gadolinium are utilized extensively.
Physical properties of the elements
* Between initial Xenon and final 6s2 electronic shells
+ Some properties of the lanthanides Atomic number 71 Density (g/cm3) 9.841 Melting point (°C) 1652 Boiling point (°C) 3402 4f14 5d1 Metal lattice (RT) hcp Metallic radius (pm) 173.8 Resistivity at 25 °C (μΩ·cm) 79 Magnetic susceptibility
χmol /10−6(cm3·mol−1)+95.9||+2500 (β)||+5530 (α)||+5930 (α)||||+1278 (α)||+30900||+185000
(350 K)||+170000 (α)||+98000||+72900||+48000||+24700||+67 (β)|+183
+ Electron configurations and colours of lanthanide ions Atomic number 71 4f14 86.1 — Colorless — +Approximate colors of lanthanide ions in aqueous solutionHolleman, p. 1937.dtv-Atlas zur Chemie 1981, Vol. 1, p. 220. Oxidation state 71 Eu2+ Tm2+ Ce3+ Pr3+ Nd3+ Pm3+ Sm3+ Gd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Lu3+ Ce4+ Pr4+ Tb4+
Effect of 4f orbitals
Chemistry and compounds
Lanthanide oxidation states
The ionization energies for the lanthanides can be compared with aluminium. In aluminium the sum of the first three ionization energies is 5139 kJ·mol−1, whereas the lanthanides fall in the range 3455 – 4186 kJ·mol−1. This correlates with the highly reactive nature of the lanthanides.
+ Ionization energies and reduction potentials of the elements
!Chemical element!!Lanthanum!!Cerium!!praseodymium!!neodymium!!promethium!!samarium!!europium!!gadolinium!!terbium!!dysprosium!!holmium!!erbium!!thulium!!ytterbium!!lutetium Atomic number 71 4f145d16s2 E° Ln4+/Ln3+ E° Ln3+/Ln2+ E° Ln3+/Ln −2.30 1st Ionization energy
(kJ·mol−1)513 2nd Ionization energy
(kJ·mol−1)1341 1st + 2nd Ionization energy
(kJ·mol−1)1854 3rd Ionization energy
(kJ·mol−1)2054 1st + 2nd + 3rd Ionization energy
(kJ·mol−1)3908 4th Ionization energy
(kJ·mol−1)4370
Separation of lanthanides
Coordination chemistry and catalysis
Ln(III) compounds
Ln(II) and Ln(IV) compounds
Hydrides
Atomic number 71 Metal lattice (RT) hcp Dihydride LuH2+x Structure calcium fluoride metal sub lattice fcc Trihydride LuH3−x metal sub lattice hcp Trihydride properties
transparent insulators
(color where recorded)LuH3−x hcp
Halides
The only tetrahalides known are the tetrafluorides of cerium, praseodymium, terbium, neodymium and dysprosium, the last two known only under matrix isolation conditions.
All of the lanthanides form trihalides with fluorine, chlorine, bromine and iodine. They are all high melting and predominantly ionic in nature. The fluorides are only slightly soluble in water and are not sensitive to air, and this contrasts with the other halides which are air sensitive, readily soluble in water and react at high temperature to form oxohalides.
+ Lanthanide halides Atomic number 71 Tetrafluoride Color m.p. °C Structure C.N. Trifluoride LuF3 Color m.p. °C white 1182 Structure C.N. YF3 8 Trichloride LuCl3 Color m.p. °C white 925 Structure C.N. YCl3 6 Tribromide LuBr3 Color m.p. °C white 1025 Structure C.N. 6 Triiodide LuI3 Color m.p. °C brown 1050 Structure C.N. BiI3 6 Difluoride Color m.p. °C Structure C.N. Dichloride Color m.p. °C Structure C.N. Dibromide Color m.p. °C Structure C.N. Diiodide Color m.p. °C Structure C.N. Ln7I12 Sesquichloride Lu2Cl3 Structure Sesquibromide Structure Monoiodide Structure
Oxides and hydroxides
Chalcogenides (S, Se, Te)
Pnictides (group 15)
Carbides
Borides
Organometallic compounds
Physical properties
Magnetic and spectroscopic
Occurrence
Applications
Industrial
Catalytic converters 45% Petroleum refining catalysts 25% Permanent magnets 12% Glass polishing and ceramics 7% Metallurgical 7% Phosphors 3% Other 1%
Radiation Resistance
Life science
Eu3+ 340⇒615 Allophycocyanin 615⇒660 320 Tb3+ 340⇒545 Phycoerythrin 545⇒575 235
Possible medical uses
Biological effects
See also
Notes
Cited sources
External links
|
|