A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian,Pond, Norman H. "The Tube Guys". Russ Cochran, 2008 p.31-40 which is used as an amplifier for high radio frequencies, from UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar , and to generate the drive power for modern particle accelerators.
In a klystron, an electron beam interacts with radio waves as it passes through cavity resonator, metal boxes along the length of a tube. The electron beam first passes through a cavity to which the input signal is applied. The energy of the electron beam amplifies the signal, and the amplified signal is taken from a cavity at the other end of the tube. The output signal can be coupled back into the input cavity to make an electronic oscillator to generate radio waves. The power gain of klystrons can be high, up to 60 dB (an increase in signal power of a factor of one million), with output power up to tens of , but the bandwidth is narrow, usually a few percent although it can be up to 10% in some devices.
A reflex klystron is an obsolete type in which the electron beam was reflected back along its path by a high potential electrode, used as an oscillator.
The work of physicist W. W. Hansen was instrumental in the development of the klystron and was cited by the Varian brothers in their 1939 paper. His resonator analysis, which dealt with the problem of accelerating electrons toward a target, could be used just as well to decelerate electrons (i.e., transfer their kinetic energy to RF energy in a resonator). During the Second World War, Hansen lectured at the MIT Radiation labs two days a week, commuting to Boston from Sperry Gyroscope Company on Long Island. His resonator was called a "rhumbatron" by the Varian brothers. Hansen died of beryllium disease in 1949 as a result of exposure to beryllium oxide (BeO).
During the Second World War, the Axis powers relied mostly on (then low-powered and long wavelength) klystron technology for their radar system microwave generation, while the Allies used the far more powerful but frequency-drifting technology of the cavity magnetron for much shorter-wavelength centimetric microwave generation. Klystron tube technologies for very high-power applications, such as and radar systems, have since been developed.
Right after the war, AT&T used 4-watt klystrons in its brand new network of microwave relay links that covered the contiguous United States .Gerald W. Brock, The Second Information Revolution, Harvard University Press, 2009, , pp. 122,123 The network provided long-distance telephone service and also carried television signals for the major TV networks. Western Union also built point-to-point microwave communication links using intermediate repeater stations at about 40 mile intervals at that time, using 2K25 reflex klystrons in both the transmitters and receivers. In some applications Klystrons have been replaced by solid state transistors. High efficiency Klystrons have been developed which have 10% more effiency than conventional Klystrons.
This beam passes through an input cavity resonator. RF energy has been fed into the input cavity at, or near, its resonant frequency, creating , which produce an oscillating voltage, which acts on the electron beam. The electric field causes the electrons to "bunch": electrons that pass through when the electric field opposes their motion are slowed, while electrons which pass through when the electric field is in the same direction are accelerated, causing the previously continuous electron beam to form bunches at the input frequency.
To reinforce the bunching, a klystron may contain additional "buncher" cavities.
The beam then passes through a "drift" tube, in which the faster electrons catch up to the slower ones, creating the "bunches", then through a "catcher" cavity.
In the output "catcher" cavity, each bunch enters the cavity at the time in the cycle when the electric field opposes the electrons' motion, decelerating them. Thus the kinetic energy of the electrons is converted to potential energy of the field, increasing the amplitude of the . The oscillations excited in the catcher cavity are coupled out through a coaxial cable or waveguide.
The spent electron beam, with reduced energy, is captured by a collector electrode.
To make an oscillator, the output cavity can be coupled to the input cavity(s) with a coaxial cable or waveguide. Positive feedback excites spontaneous oscillations at the resonant frequency of the cavities.
At one end of the tube is the hot cathode which produces electrons when heated by a filament. The electrons are attracted to and pass through an anode cylinder at a high positive potential; the cathode and anode act as an electron gun to produce a high velocity stream of electrons. An external electromagnet winding creates a longitudinal magnetic field along the beam axis which prevents the beam from spreading.
The beam first passes through the "buncher" cavity resonator, through grids attached to each side. The buncher grids have an oscillating AC potential across them, produced by standing wave oscillations within the cavity, excited by the input signal at the cavity's resonant frequency applied by a coaxial cable or waveguide. The direction of the field between the grids changes twice per cycle of the input signal. Electrons entering when the entrance grid is negative and the exit grid is positive encounter an electric field in the same direction as their motion, and are accelerated by the field. Electrons entering a half-cycle later, when the polarity is opposite, encounter an electric field which opposes their motion, and are decelerated.
Beyond the buncher grids is a space called the drift space. This space is long enough so that the accelerated electrons catch up with electrons that were decelerated at an earlier time, forming "bunches" longitudinally along the beam axis. Its length is chosen to allow maximum bunching at the resonant frequency, and may be several feet long.
The electrons then pass through a second cavity, called the "catcher", through a similar pair of grids on each side of the cavity. The function of the catcher grids is to absorb energy from the electron beam. The bunches of electrons passing through excite standing waves in the cavity, which has the same resonant frequency as the buncher cavity. Each bunch of electrons passes between the grids at a point in the cycle when the exit grid is negative with respect to the entrance grid, so the electric field in the cavity between the grids opposes the electrons motion. The electrons thus do work on the electric field, and are decelerated, their kinetic energy is converted to electric potential energy, increasing the amplitude of the oscillating electric field in the cavity. Thus the oscillating field in the catcher cavity is an amplified copy of the signal applied to the buncher cavity. The amplified signal is extracted from the catcher cavity through a coaxial cable or waveguide.
After passing through the catcher and giving up its energy, the lower energy electron beam is absorbed by a "collector" electrode, a second anode which is kept at a small positive voltage.
The residual kinetic energy in the electron beam when it hits the collector electrode represents wasted energy, which is dissipated as heat, which must be removed by a cooling system. Some modern klystrons include depressed collectors, which recover energy from the beam before collecting the electrons, increasing efficiency. Multistage depressed collectors enhance the energy recovery by "sorting" the electrons in energy bins.
The reflex klystron (also known as a Sutton tube after one of its inventors, Robert Sutton) was a low power klystron tube with a single cavity, which functioned as an oscillator. It was used as a local oscillator in some radar receivers and a modulator in microwave transmitters in the 1950s and 1960s, but is now obsolete, replaced by semiconductor microwave devices.
In the reflex klystron the electron beam passes through a single resonant cavity. The electrons are fired into one end of the tube by an electron gun. After passing through the resonant cavity they are reflected by a negatively charged reflector electrode for another pass through the cavity, where they are then collected. The electron beam is velocity modulated when it first passes through the cavity. The formation of electron bunches takes place in the drift space between the reflector and the cavity. The on the reflector must be adjusted so that the bunching is at a maximum as the electron beam re-enters the resonant cavity, thus ensuring a maximum of energy is transferred from the electron beam to the Radio frequency oscillations in the cavity. The reflector voltage may be varied slightly from the optimum value, which results in some loss of output power, but also in a variation in frequency. This effect is used to good advantage for automatic frequency control in receivers, and in frequency modulation for transmitters. The level of modulation applied for transmission is small enough that the power output essentially remains constant. At regions far from the optimum voltage, no oscillations are obtained at all. There are often several regions of reflector voltage where the reflex klystron will oscillate; these are referred to as modes. The electronic tuning range of the reflex klystron is usually referred to as the variation in frequency between half power points—the points in the oscillating mode where the power output is half the maximum output in the mode.
Modern semiconductor technology has effectively replaced the reflex klystron in most applications.
The gyroklystron has cylindrical or coaxial cavities and operates with transverse electric field modes. Since the interaction depends on the resonance condition, larger cavity dimensions than a conventional klystron can be used. This allows the gyroklystron to deliver high power at very high frequencies which is challenging using conventional klystrons.
Tuning a klystron is delicate work which, if not done properly, can cause damage to equipment or injury to the technician due to the very high voltages that could be produced. The technician must be careful not to exceed the limits of the graduations, or damage to the klystron can result. Other precautions taken when tuning a klystron include using nonferrous tools. Some klystrons employ permanent . If a technician uses ferrous tools (which are ferromagnetic) and comes too close to the intense magnetic fields that contain the electron beam, such a tool can be pulled into the unit by the intense magnetic force, smashing fingers, injuring the technician, or damaging the unit. Special lightweight nonmagnetic (or rather very weakly diamagnetic) tools made of beryllium alloy have been used for tuning U.S. Air Force klystrons.
Precautions are routinely taken when transporting klystron devices in aircraft, as the intense magnetic field can interfere with magnetic navigation equipment. Special overpacks are designed to help limit this field "in the field," and thus allow such devices to be transported safely.
Gyroklystrons have found limited military application in radars as traveling-wave tube signal amplifiers for active phased array radar.
Popular Sciences "Best of What's New 2007" described a company, Global Resource Corporation, currently defunct, using a klystron to convert the hydrocarbons in everyday materials, automotive waste, coal, oil shale, and oil sands into natural gas and diesel fuel. US Patent 7629497 - Microwave-based recovery of hydrocarbons and fossil fuels Issued on December 8, 2009
|
|