The kilogram (also spelled kilogramme) is the base unit of mass in the International System of Units (SI), equal to one thousand grams. It has the unit symbol kg. The word "kilogram" is formed from the combination of the metric prefix kilo- (meaning one thousand) and gram; it is colloquially shortened to " kilo" (plural "kilos"). Merriam-Mebster definition of Kilo
The kilogram is an SI base unit, defined ultimately in terms of three defining constants of the SI, namely Caesium standard of the caesium-133 atom, the speed of light, and the Planck constant. A properly equipped metrology laboratory can calibrate a mass measurement instrument such as a Kibble balance as a primary standard for the kilogram mass.
The kilogram was originally defined in 1795 during the French Revolution as the mass of one litre of water (originally at 0 Celsius, later changed to the temperature of its maximum density, approximately 4 °C). The current definition of a kilogram agrees with this original definition to within 30 parts per million (0.003%). In 1799, the platinum Kilogramme des Archives replaced it as the standard of mass. In 1889, a cylinder composed of platinum–iridium, the International Prototype of the Kilogram (IPK), became the standard of the unit of mass for the metric system and remained so for 130 years, before the current standard was adopted in 2019.
Defined in term of those units, the kg is formulated as: SI Brochure: The International System of Units (SI). BIPM, 9th edition, 2019.
This definition is generally consistent with previous definitions: the kilogram remains within 30 parts per million (0.003%) of the mass of one litre of water at the temperature of its maximum density (approximately 4 Celsius), with the density of water at that temperature very close to 1 kg/L.The density of water is at . See
Greek γράμμα (as it were μα]], Doric γράθμα) means "something written, a letter", but it came to be used as a unit of weight, apparently equal to of an [[ounce]] ( of a libra, which would correspond to about 1.14 grams in modern units), at some time during Late Antiquity. French gramme was adopted from Latin gramma, itself quite obscure, but found in the Carmen de ponderibus et mensuris (8.25) attributed by [[Remmius Palaemon]] (fl. 1st century), where it is the weight of two obolus]] (Charlton T. Lewis, Charles Short, ''A Latin Dictionary'' [https://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0059%3Aentry%3Dgramma2 s.v. "gramma"], 1879).Henry George Liddell. Robert Scott. A Greek-English Lexicon (revised and augmented edition, Oxford, 1940) s.v. γράμμα, citing the 10th-century work Geoponica and a 4th-century papyrus edited in L. Mitteis, Griechische Urkunden der Papyrussammlung zu Leipzig, vol. i (1906), 62 ii 27. The word kilogramme was written into French law in 1795, in the Decree of 18 Germinal, which revised the provisional system of units introduced by the French National Convention two years earlier, where the gravet had been defined as weight (poids) of a cubic centimetre of water, equal to 1/1000 of a grave.italic=unset, vol. 6 (2nd ed. 1834), p. 70. The metre (mètre) on which this definition depends was itself defined as the ten-millionth part of a quarter of Earth's meridian, given in traditional units as 3 pieds, 11.44 lignes (a ligne being the 12th part of a pouce (inch), or the 144th part of a pied. In the decree of 1795, the term gramme thus replaced gravet, and kilogramme replaced grave.
The French spelling was adopted in Great Britain when the word was used for the first time in English in 1795,
Contemporaneous English translation of the French decree of 1795
with the spelling kilogram being adopted in the United States. In the United Kingdom both spellings are used, with "kilogram" having become by far the more common.
UK law regulating the units to be used when trading by weight or measure does not prevent the use of either spelling.
In the 19th century the French word kilo, a shortening of kilogramme, was imported into the English language where it has been used to mean both kilogram and kilometre. While kilo as an alternative is acceptable, to The Economist for example, the Canadian government's Termium Plus system states that "SI (International System of Units) usage, followed in scientific and technical writing" does not allow its usage and it is described as "a common informal name" on Russ Rowlett's Dictionary of Units of Measurement. When the United States Congress gave the metric system legal status in 1866, it permitted the use of the word kilo as an alternative to the word kilogram, but in 1990 revoked the status of the word kilo.
The SI system was introduced in 1960 and in 1970 the BIPM started publishing the SI Brochure, which contains all relevant decisions and recommendations by the CGPM concerning units. The SI Brochure states that "It is not permissible to use abbreviations for unit symbols or unit names ...".The French text (which is the authoritative text) states "Il n'est pas autorisé d'utiliser des abréviations pour les symboles et noms d'unités ..."
For use with east Asian character sets, the SI symbol is encoded as a single Unicode character, in the CJK Compatibility block.
The International Committee for Weights and Measures (CIPM) approved a revision in November 2018 that defines the kilogram by defining the Planck constant to be exactly , effectively defining the kilogram in terms of the second and the metre. The new definition took effect on 20 May 2019.
Prior to the redefinition, the kilogram and several other SI units based on the kilogram were defined by a man-made metal artifact: the Kilogramme des Archives from 1799 to 1889, and the IPK from 1889 to 2019.
In 1960, the metre, previously similarly having been defined with reference to a single platinum-iridium bar with two marks on it, was redefined in terms of an invariant physical constant (the wavelength of a particular emission of light emitted by krypton, and later the speed of light) so that the standard can be independently reproduced in different laboratories by following a written specification.
At the 94th Meeting of the CIPM in 2005, it was recommended that the same be done with the kilogram.
In October 2010, the CIPM voted to submit a resolution for consideration at the General Conference on Weights and Measures (CGPM), to "take note of an intention" that the kilogram be defined in terms of the Planck constant, (which has dimensions of energy times time, thus mass × length / time) together with other physical constants. This resolution was accepted by the 24th conference of the CGPM in October 2011 and further discussed at the 25th conference in 2014. Although the Committee recognised that significant progress had been made, they concluded that the data did not yet appear sufficiently robust to adopt the revised definition, and that work should continue to enable the adoption at the 26th meeting, scheduled for 2018. Such a definition would theoretically permit any apparatus that was capable of delineating the kilogram in terms of the Planck constant to be used as long as it possessed sufficient precision, accuracy and stability. The Kibble balance is one way to do this.
As part of this project, a variety of very different technologies and approaches were considered and explored over many years. Some of these approaches were based on equipment and procedures that would enable the reproducible production of new, kilogram-mass prototypes on demand (albeit with extraordinary effort) using measurement techniques and material properties that are ultimately based on, or traceable to, physical constants. Others were based on devices that measured either the acceleration or weight of hand-tuned kilogram test masses and that expressed their magnitudes in electrical terms via special components that permit traceability to physical constants. All approaches depend on converting a weight measurement to a mass and therefore require precise measurement of the strength of gravity in laboratories (gravimetry). All approaches would have precisely fixed one or more constants of nature at a defined value.
|
|