Katanin is a microtubule-severing AAA protein. It is named after the Japanese sword called a katana. Katanin is a heterodimeric protein first discovered in . It contains a 60 kDa ATPase Protein subunit, encoded by KATNA1, which functions to sever microtubules. This subunit requires ATP and the presence of microtubules for activation. The second 80 kDA subunit, encoded by KATNB1, regulates the activity of the ATPase and localizes the protein to centrosomes. Electron microscopy shows that katanin forms 14–16 nm rings in its active state on the walls of microtubules (although not around the microtubule).
The severing of microtubules by katanin is regulated by protective microtubule-associated proteins (MAPs), and the p80 subunit (p60 severs microtubules much better in the presence of p80). These mechanisms have different consequences, depending on where in the cell they are activated or disrupted. For example, allowing katanin-mediated severing at the centrosome releases microtubules for free movement. In one experiment, anti-katanin antibody were injected into a cell, causing a large accumulation of microtubules around the centrosome and inhibition of microtubule outgrowth. Ahmad, F., Yu, W., McNally, F. & Baas, P. An Essential Role for Katanin in Severing Microtubules in the Neuron Therefore, katanin-mediated severing may serve to maintain organization in the cytoplasm by promoting microtubule disassembly and efficient movement. During cell division, severing at the spindle pole produces free microtubule ends and allows poleward flux of tubulin and retraction of the microtubule. Severing microtubules in the cytoplasm facilitates treadmilling and mobility, which is important during development.
Similar results have been obtained in relation to katanin's activity during meiosis in C. elegans. Srayko, M., Buster, W., Bazirgan, O., McNally & F., Mains, P. (2000) MEI-1/MEI-2 Katanin-like Microtubule Severing Activity is Required for Caenorhabditis elegans Meiosis. It was reported that Mei-1 and Mei-2 to encode similar proteins to the p60 and p80 subunits of katanin. Using antibodies, these two proteins were found to localize at the ends of microtubules in the meiotic spindle, and, when expressed in HeLa cells, these proteins initiated microtubule severing. These findings indicate that katanin serves a similar purpose in both mitosis and meiosis in segregating chromatids toward the spindle poles.
A similar experiment using fluorescently labeled tubulin observed local microtubule fragmentation in newt lung cell lamellipodia during developmental migration, in which the fragments run perpendicular to the advancing cell membrane to aid exploration. Waterman-Storer, C. & Salmon, E. (1997). Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. The local nature of both fragmentation events likely indicates regulation by katanin because it can be concentrated in specific cellular regions. This is supported by a study that demonstrated that the Fra2 mutation, which affects a katanin orthologue in Arabidopsis thaliana, leads to an aberrant disposition of cellulose microfibrils along the developing cell wall in these plants. Burk, D. & Ye, Z. (2002) Alteration of Oriented Deposition of Cellulose Microfibrils by Mutation of a Katanin-Like Microtubule-Severing Protein. This mutation produced a phenotype with reduced cell elongation, which suggests katanin's significance in development across a wide range of organisms.
In the nervous system, the ratio of the two subunits is dramatically different from other organs of the body. So it is important to be able to regulate the ratio to control microtubule severing. The monomer p80 is found in all the compartments of the neuron, which means its function cannot be solely to target katanin. The p80 katanin has multiple domains with different functions. One domain targets the centrosome, another augments microtubule severing by the p60 katanin, and the last suppresses microtubule severing. The abundance of katanin in the neurons show they can move along the axon. There is breakage of microtubules at the axonal branch points and in the growth cones of the neurons. The distribution of katanin in the neuron helps understand the phenomenon for regulating microtubule length and number, as well as releasing the microtubules from the centrosome.
Katanin is believed to be regulated by the phosphorylation of other proteins. Bending enhances the access of katanin to the lattice, facilitating severing.
During cell elongation, microtubules must adjust their orientation constantly to keep up with the increasing cell length. This constant change in microtubule organization was proposed to be performed by the rapid disassembly, assembly, and translocation of microtubules.Cyr, R.J. & Palevitz, B.A. (1995) Organization of cortical microtubules in plant cells. Recently, mutations in the plant katanin homologue have been shown to alter transitions in microtubule organization, which, in turn, cause impairments in the proper deposition of cellulose and hemicellulose. This is presumed to be caused by the plant cell's lack of ability to regulate microtubule lengths.
There is no homologue for the p80 katanin regulatory subunit. Therefore, a His-tagged At-p60 was made to describe its functions in plants. The His-At-p60 can sever microtubules in vitro in the presence of ATP. It directly interacts with microtubules in co-sedimentation assays. The ATPase activity was stimulated in a non-hyperbolic way. ATP hydrolysis is stimulated at a low tubulin/At-p60 ratio and inhibited at higher ratios. The low ratios favor the katanin subunit interactions, whereas the high ratios show impairment. The At-p60 can oligomerize like the ones in animals. The At-p60 interacts directly with microtubules, whereas the animal p60 bind via their N-terminal end. The N-terminal part of p60 is not well conserved between the plant and animal kingdoms.
Function in plants
See also
External links
|
|