Product Code Database
Example Keywords: games -skirt $91
barcode-scavenger
   » » Wiki: Reflexive Relation
Tag Wiki 'Reflexive Relation'.
Tag

In , a R on a set X is reflexive if it relates every element of X to itself.

An example of a reflexive relation is the relation "is equal to" on the set of , since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.


Etymology
The word reflexive is originally derived from the reflexivus ('recoiling' cf., or 'directed upon itself') (c. 1250 AD) from the reflexus- ('turn away', 'reflection') + -īvus (suffix). The word entered Early Modern English in the 1580s. The sense of the word meaning 'directed upon itself', as now used in mathematics, surviving mostly by its use in philosophy and grammar (cf. and Reflexive pronoun). Oxford English Dictionary, s.v. “,” September 2024.

The first explicit use of "reflexivity", that is, describing a relation as having the property that every element is related to itself, is generally attributed to in his Arithmetices principia (1889), wherein he defines one of the fundamental properties of equality being a = a.

(2025). 9781135223113 .
The first use of the word reflexive in the sense of mathematics and logic was by in his Principles of Mathematics (1903). Oxford English Dictionary, s.v. “”, " 1903–", September 2024.


Definitions
A relation R on the set X is said to be if for every x \in X, (x,x) \in R.

Equivalently, letting \operatorname{I}_X := \{ (x, x) ~:~ x \in X \} denote the identity relation on X, the relation R is reflexive if \operatorname{I}_X \subseteq R.

The of R is the union R \cup \operatorname{I}_X, which can equivalently be defined as the smallest (with respect to \subseteq) reflexive relation on X that is a of R. A relation R is reflexive if and only if it is equal to its reflexive closure.

The or of R is the smallest (with respect to \subseteq) relation on X that has the same reflexive closure as R. It is equal to R \setminus \operatorname{I}_X = \{ (x, y) \in R ~:~ x \neq y \}. The reflexive reduction of R can, in a sense, be seen as a construction that is the "opposite" of the reflexive closure of R. For example, the reflexive closure of the canonical strict inequality < on the \mathbb{R} is the usual non-strict inequality \leq whereas the reflexive reduction of \leq is <.


Related definitions
There are several definitions related to the reflexive property. The relation R is called:
; , or :This term is due to C S Peirce; see . Russell also introduces two equivalent terms to be contained in or imply diversity. if it does not relate any element to itself; that is, if x R x holds for no x \in X. A relation is irreflexive if and only if its complement in X \times X is reflexive. An asymmetric relation is necessarily irreflexive. A transitive and irreflexive relation is necessarily asymmetric.
; : if whenever x, y \in X are such that x R y, then necessarily x R x.The Encyclopædia Britannica calls this property quasi-reflexivity.
; : if whenever x, y \in X are such that x R y, then necessarily y R y.
; : if every element that is part of some relation is related to itself. Explicitly, this means that whenever x, y \in X are such that x R y, then necessarily x R x and y R y. Equivalently, a binary relation is quasi-reflexive if and only if it is both left quasi-reflexive and right quasi-reflexive. A relation R is quasi-reflexive if and only if its symmetric closure R \cup R^{\operatorname{T}} is left (or right) quasi-reflexive.
; antisymmetric: if whenever x, y \in X are such that x R y \text{ and } y R x, then necessarily x = y.
; : if whenever x, y \in X are such that x R y, then necessarily x = y. A relation R is coreflexive if and only if its symmetric closure is anti-symmetric.

A reflexive relation on a nonempty set X can neither be irreflexive, nor asymmetric (R is called if x R y implies not y R x), nor (R is if x R y \text{ and } y R z implies not x R z).


Examples
Examples of reflexive relations include:
  • "is equal to" (equality)
  • "is a of" (set inclusion)
  • "divides" ()
  • "is greater than or equal to"
  • "is less than or equal to"
Examples of irreflexive relations include:
  • "is not equal to"
  • "is to" on the integers larger than 1
  • "is a of"
  • "is greater than"
  • "is less than"

An example of an irreflexive relation, which means that it does not relate any element to itself, is the "greater than" relation (x > y) on the . Not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not (that is, neither all nor none are). For example, the binary relation "the product of x and y is even" is reflexive on the set of , irreflexive on the set of odd numbers, and neither reflexive nor irreflexive on the set of .

An example of a quasi-reflexive relation R is "has the same limit as" on the set of sequences of real numbers: not every sequence has a limit, and thus the relation is not reflexive, but if a sequence has the same limit as some sequence, then it has the same limit as itself. An example of a left quasi-reflexive relation is a left Euclidean relation, which is always left quasi-reflexive but not necessarily right quasi-reflexive, and thus not necessarily quasi-reflexive.

An example of a coreflexive relation is the relation on in which each odd number is related to itself and there are no other relations. The equality relation is the only example of a both reflexive and coreflexive relation, and any coreflexive relation is a subset of the identity relation. The union of a coreflexive relation and a transitive relation on the same set is always transitive.


Number of reflexive relations
The number of reflexive relations on an n-element set is 2^{n^2-n}.On-Line Encyclopedia of Integer Sequences


Philosophical logic
Authors in philosophical logic often use different terminology. Reflexive relations in the mathematical sense are called totally reflexive in philosophical logic, and quasi-reflexive relations are called reflexive.


Notes


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time