Indeterminism is the idea that (or certain events, or events of certain types) are not causality, or are not caused determinism.
It is the opposite of determinism and related to chance. It is highly relevant to the philosophical problem of free will, particularly in the form of metaphysical libertarianism. In science, most specifically quantum theory in physics, indeterminism is the belief that no event is certain and the entire outcome of anything is probability. Heisenberg's uncertainty principle and the "Born rule", proposed by Max Born, are often starting points in support of the indeterministic nature of the universe.The Born rule itself does not imply whether the observed indeterminism is due to the object, to the measurement system, or both. The ensemble interpretation by Born does not require fundamental indeterminism and lack of causality. Indeterminism is also asserted by Sir Arthur Eddington, and Murray Gell-Mann. Indeterminism has been promoted by the French biologist Jacques Monod's essay " Chance and Necessity". The physicist-chemist Ilya Prigogine argued for indeterminism in complex systems.
If x is a necessary cause of y; then the presence of y implies that x definitely preceded it. The presence of x, however, does not imply that y will occur.
If x is a sufficient cause of y, then the presence of y implies that x may have preceded it. (However, another cause z may alternatively cause y. Thus the presence of y does not imply the presence of x, or z, or any other suspect.)
It is possible for everything to have a necessary cause, even while indeterminism holds and the future is open, because a necessary condition does not lead to a single inevitable effect. Indeterministic (or probabilistic) causation is a proposed possibility, such that "everything has a cause" is not a clear statement of indeterminism.
It can be proved that realizations of any probability distribution other than the uniform one are mathematically equal to applying a (deterministic) function (namely, an inverse distribution function) on a random variable following the latter (i.e. an "absolutely random" oneThe uniform distribution is the most "agnostic" distribution, representing lack of any information. Laplace in his theory of probability was apparently the first one to notice this. Currently, it can be shown using definitions of entropy.); the probabilities are contained in the deterministic element. A simple form of demonstrating it would be shooting randomly within a square and then (deterministically) interpreting a relatively large subsquare as the more probable outcome.
"The cosmos, then, became like a spherical form in this way: the atoms being submitted to a casual and unpredictable movement, quickly and incessantly"."ὁ τοίνυν κόσμος συνέστη περικεκλασμένῳ σχήματι ἐσχηματισμένος τὸν τρόπον τοῦτον. τῶν ἀτόμων σωμάτων ἀπρονόητον καὶ τυχαίαν ἐχόντων τὴν κίνησιν συνεχῶς τε καὶ τάχιστα κινουμένων" H.Diels-W.Kranz Die Fragmente der Vorsokratiker, Berlin Weidmann 1952, 24, I, 1
In his Physics and Metaphysics, Aristotle said there were accidents (συμβεβηκός, sumbebekos) caused by nothing but chance (τύχη, tukhe). He noted that he and the early physicists found no place for chance among their causes.
Aristotle opposed his accidental chance to necessity:
Nor is there any definite cause for an accident, but only chance (τυχόν), namely an indefinite (ἀόριστον) cause.Aristotle, ''Metaphysics'', Book V, 1025a25
It is obvious that there are principles and causes which are generable and destructible apart from the actual processes of generation and destruction; for if this is not true, everything will be of necessity: that is, if there must necessarily be some cause, other than accidental, of that which is generated and destroyed. Will this be, or not? Yes, if this happens; otherwise not.Aristotle, ''Metaphysics'', Book VI, 1027a29-33
...we show the existence of causes are plausible, and if those, too, are plausible which prove that it is incorrect to assert the existence of a cause, and if there is no way to give preference to any of these over others – since we have no agreed-upon sign, criterion, or proof, as has been pointed out earlier – then, if we go by the statements of the , it is necessary to epoche about the existence of causes, too, saying that they are no more existent than non-existentSextus Empiricus Outlines of Pyrrhonism Book III Chapter 5
"The matter, by virtue of its own active force, moves and acts in blind manner".Meslier, J. The Testament.
Soon after Julien Offroy de la Mettrie in his L'Homme Machine. (1748, anon.) wrote:
"Perhaps, the cause of man's existence is just in existence itself? Perhaps he is by chance thrown in some point of this terrestrial surface without any how and why".
In his Anti-Sénèque ''Traité we read:
"Then, the chance has thrown us in life".Jde La Mettrie, J.O.: Anti-Sénèque
In the 19th century the French Philosopher Antoine-Augustin Cournot theorized chance in a new way, as series of not-linear causes. He wrote in Essai sur les fondements de nos connaissances (1851):
"It is not because of rarity that the chance is actual. On the contrary, it is because of chance they produce many possible others."Cournot, A.A: Essai sur les fondements de nos connaissances et sur les caractères de la critique philosophique, § 32.
Peirce does not, of course, assert that there is no law in the universe. On the contrary, he maintains that an absolutely chance world would be a contradiction and thus impossible. Complete lack of order is itself a sort of order. The position he advocates is rather that there are in the universe both regularities and irregularities.
Karl Popper commentsPopper, K: Of Clouds and Cuckoos, included in Objective Knowledge, revised, 1978, p231. that Peirce's theory received little contemporary attention, and that other philosophers did not adopt indeterminism until the rise of quantum mechanics.
Reacting to criticisms that his ideas made chance the direct cause of our actions, Compton clarified the two-stage nature of his idea in an Atlantic Monthly article in 1955. First there is a range of random possible events, then one adds a determining factor in the act of choice.
A set of known physical conditions is not adequate to specify precisely what a forthcoming event will be. These conditions, insofar as they can be known, define instead a range of possible events from among which some particular event will occur. When one exercises freedom, by his act of choice he is himself adding a factor not supplied by the physical conditions and is thus himself determining what will occur. That he does so is known only to the person himself. From the outside one can see in his act only the working of physical law. It is the inner knowledge that he is in fact doing what he intends to do that tells the actor himself that he is free."Science and Man’s Freedom", in The Cosmos of Arthur Holly Compton, 1967, Knopf, p. 115
Compton welcomed the rise of indeterminism in 20th century science, writing:
In my own thinking on this vital subject I am in a much more satisfied state of mind than I could have been at any earlier stage of science. If the statements of the laws of physics were assumed correct, one would have had to suppose (as did most philosophers) that the feeling of freedom is illusory, or if free choice were considered effective, that the laws of physics ... were unreliable. The dilemma has been an uncomfortable one.Commpton, A.H. The Human Meaning of Science p. ixTogether with Arthur Eddington in Britain, Compton was one of those rare distinguished physicists in the English speaking world of the late 1920s and throughout the 1930s arguing for the “liberation of free will” with the help of Heisenberg’s indeterminacy principle, but their efforts had been met not only with physical and philosophical criticism but most primarily with fierce political and ideological campaigns.
I believe Peirce was right in holding that all clocks are clouds to some considerable degree — even the most precise of clocks. This, I think, is the most important inversion of the mistaken determinist view that all clouds are clocksPopper, K: Of Clouds and Cuckoos, included in Objective Knowledge, revised, 1978, p215.
Popper was also a promoter of propensity probability.
What allows for ultimate responsibility of creation in Kane's picture are what he refers to as "self-forming actions" or SFAs — those moments of indecision during which people experience conflicting wills. These SFAs are the undetermined, regress-stopping voluntary actions or refrainings in the life histories of agents that are required for UR. UR does not require that every act done of our own free will be undetermined and thus that, for every act or choice, we could have done otherwise; it requires only that certain of our choices and actions be undetermined (and thus that we could have done otherwise), namely SFAs. These form our character or nature; they inform our future choices, reasons and motivations in action. If a person has had the opportunity to make a character-forming decision (SFA), he is responsible for the actions that are a result of his character.
Classical chaos is not usually considered an example of indeterminism, as it can occur in deterministic systems such as the three-body problem.
John Earman has argued that most physical theories are indeterministic. Earman, J. Determinism: What We Have Learned, and What We Still Don't Know The Stanford Encyclopedia of Philosophy: Causal Determinism For instance, Newtonian physics admits solutions where particles accelerate continuously, heading out towards infinity. By the time reversibility of the laws in question, particles could also head inwards, unprompted by any pre-existing state. He calls such hypothetical particles "space invaders".
John D. Norton has suggested another indeterministic scenario, known as Norton's Dome, where a particle is initially situated on the exact apex of a dome. Stanford Encyclopedia of Philosophy Causal Determinism
Branching space-time is a theory uniting indeterminism and the special theory of relativity. The idea was originated by Nuel Belnap. The equations of general relativity admit of both indeterministic and deterministic solutions.
In the essay Chance and Necessity (1970) Jacques Monod rejected the role of final causation in biology, instead arguing that a mixture of efficient causation and "pure chance" lead to teleonomy, or merely apparent purposefulness.
The Japanese theoretical population geneticist Motoo Kimura emphasises the role of indeterminism in evolution. According to neutral theory of molecular evolution: "at the molecular level most evolutionary change is caused by random drift of mutation that are equivalent in the face of selection.Kimura, M. The neutral theory of molecular evolution, ( The Science, No. 1, 1980, p. 34)
Prigogine traces the dispute over determinism back to Charles Darwin, whose attempt to explain individual variability according to evolving populations inspired Ludwig Boltzmann to explain the behavior of gases in terms of populations of particles rather than individual particles.End of Certainty by Ilya Prigogine pp. 19–21 Free Press; 1 edition (August 17, 1997) [7] This led to the field of statistical mechanics and the realization that gases undergo irreversible processes. In deterministic physics, all processes are time-reversible, meaning that they can proceed backward as well as forward through time. As Prigogine explains, determinism is fundamentally a denial of the arrow of time. With no arrow of time, there is no longer a privileged moment known as the "present," which follows a determined "past" and precedes an undetermined "future." All of time is simply given, with the future as determined or undetermined as the past. With irreversibility, the arrow of time is reintroduced to physics. Prigogine notes numerous examples of irreversibility, including diffusion, radioactive decay, solar radiation, weather and the emergence and evolution of life. Like weather systems, organisms are unstable systems existing far from thermodynamic equilibrium. Instability resists standard deterministic explanation. Instead, due to sensitivity to initial conditions, unstable systems can only be explained statistically, that is, in terms of probability.
Prigogine asserts that Newtonian physics has now been "extended" three times, first with the use of the wave function in quantum mechanics, then with the introduction of spacetime in general relativity and finally with the recognition of indeterminism in the study of unstable systems.
However, the advent of quantum mechanics removed the underpinning from that approach, with the claim that (at least according to the Copenhagen interpretation) the most basic constituents of matter at times behave indeterministically. This comes from the collapse of the wave function, in which the state of a system upon measurement cannot in general be predicted. Quantum mechanics only predicts the probabilities of possible outcomes, which are given by the Born rule. Non-deterministic behavior in wave function collapse is not only a feature of the Copenhagen interpretation, with its observer-dependence, but also of objective collapse and other theories.
Opponents of quantum indeterminism suggested that determinism could be restored by formulating a new theory in which additional information, so-called hidden variables, Cosmos Magazine: How Much Free Will Do We Have would allow definite outcomes to be determined. For instance, in 1935, Einstein, Podolsky and Rosen wrote a paper titled "EPR paradox" arguing that such a theory was in fact necessary to preserve the principle of locality. In 1964, John S. Bell was able to define a theoretical test for these local hidden variable theories, which was reformulated as a workable experimental test through the work of CHSH inequality. The negative result of the 1980s tests by Alain Aspect ruled such theories out, provided certain assumptions about the experiment hold. Thus any interpretation of quantum mechanics, including deterministic reformulations, must either reject locality or reject counterfactual definiteness altogether. David Bohm's theory is the main example of a non-local deterministic quantum theory.
The many-worlds interpretation is said to be deterministic, but experimental results still cannot be predicted: experimenters do not know which 'world' they will end up in. Technically, counterfactual definiteness is lacking.
A notable consequence of quantum indeterminism is the Heisenberg uncertainty principle, which prevents the simultaneous accurate measurement of all a particle's properties.
Despite recognizing indeterminism to be a very low-level, necessary prerequisite, Björn Brembs says that it's not even close to being sufficient for addressing things like morality and responsibility.
Determinism and indeterminism are examined in Causality and Chance in Modern Physics by David Bohm. He speculates that, since determinism can emerge from underlying indeterminism (via the law of large numbers),In this regard, by recognizing chance (contingency) in the reality, the rationality of the empirical law of large numbers can be shown. See: D’AMICO Rosario. Chance and The Statistical Law of Large Numbers. Journal of Mathematical Economics and Finance, S.l., v. 7, n. 2, p. 41-53, dec. 2021. ISSN 2458-0813. Available at:
https://journals.aserspublishing.eu/jmef/article/view/6879
|
|