Inbreeding is the production of offspring from the mating or breeding of individuals or that are closely genetic distance. By analogy, the term is used in human reproduction, but more commonly refers to the genetic disorders and other consequences that may arise from expression of recessive traits resulting from sexual relationships and consanguinity. Animals avoid inbreeding only rarely.
Inbreeding results in homozygous which can increase the chances of offspring being affected by recessive phenotypic trait. In extreme cases, this usually leads to at least temporarily decreased biological fitness of a population (called inbreeding depression), which is its ability to survive and reproduce. An individual who inherits such deleterious traits is colloquially referred to as inbred. The avoidance of expression of such deleterious recessive caused by inbreeding, via inbreeding avoidance mechanisms, is the main selective reason for outcrossing.Michod RE. Eros and Evolution: A Natural Philosophy of Sex. (1994) Perseus Books, Crossbreeding between populations sometimes has positive effects on fitness-related traits, but also sometimes leads to negative effects known as outbreeding depression. However, increased homozygosity increases the probability of fixing beneficial alleles and also slightly decreases the probability of fixing deleterious alleles in a population. Inbreeding can result in purging of deleterious alleles from a population through purifying selection.
Inbreeding is a technique used in selective breeding. For example, in livestock breeding, breeders may use inbreeding when trying to establish a new and desirable Phenotypic trait in the stock and for producing distinct families within a breed, but will need to watch for undesirable characteristics in offspring, which can then be eliminated through further selective breeding or culling. Inbreeding also helps to ascertain the type of gene action affecting a trait. Inbreeding is also used to reveal deleterious recessive alleles, which can then be eliminated through assortative breeding or through culling. In plant breeding, are used as stocks for the creation of hybrid lines to make use of the effects of heterosis. Inbreeding in plants also occurs naturally in the form of self-pollination.
Inbreeding can significantly influence gene expression which can prevent inbreeding depression.
Malformations or harmful traits can stay within a population due to a high homozygosity rate, and this will cause a population to become fixed for certain traits, like having too many bones in an area, like the vertebral column of wolves on Isle Royale or having cranial abnormalities, such as in Northern elephant seals, where their cranial bone length in the lower mandibular tooth row has changed. Having a high homozygosity rate is problematic for a population because it will unmask recessive deleterious alleles generated by mutations, reduce heterozygote advantage, and it is detrimental to the survival of small, endangered animal populations. When deleterious recessive alleles are unmasked due to the increased homozygosity generated by inbreeding, this can cause inbreeding depression.
There may also be other deleterious effects besides those caused by recessive diseases. Thus, similar may be more vulnerable to infectious diseases (see Major histocompatibility complex and sexual selection).
Inbreeding history of the population should also be considered when discussing the variation in the severity of inbreeding depression between and within species. With persistent inbreeding, there is evidence that shows that inbreeding depression becomes less severe. This is associated with the unmasking and elimination of severely deleterious recessive alleles. However, inbreeding depression is not a temporary phenomenon because this elimination of deleterious recessive alleles will never be complete. Eliminating slightly deleterious mutations through inbreeding under moderate selection is not as effective. Fixation of alleles most likely occurs through Muller's ratchet, when an asexual population's genome accumulates deleterious mutations that are irreversible.
Despite all its disadvantages, inbreeding can also have a variety of advantages, such as ensuring a child produced from the mating contains, and will pass on, a higher percentage of its mother/father's genetics, reducing the recombination load,
Children of parent-child or sibling-sibling unions are at an increased risk compared to cousin-cousin unions.
The isolation of a small population for a period of time can lead to inbreeding within that population, resulting in increased genetic relatedness between breeding individuals. Inbreeding depression can also occur in a large population if individuals tend to mate with their relatives, instead of mating randomly.
Due to higher prenatal and child mortality mortality rates, some individuals in the first generation of inbreeding will not live on to reproduce. Over time, with isolation, such as a population bottleneck caused by purposeful (assortative) breeding or natural environmental factors, the deleterious inherited traits are culled.
Island species are often very inbred, as their isolation from the larger group on a mainland allows natural selection to work on their population. This type of isolation may result in the formation of race or even speciation, as the inbreeding first removes many deleterious genes, and permits the expression of genes that allow a population to adapt to an ecosystem. As the adaptation becomes more pronounced, the new species or race radiates from its entrance into the new space, or dies out if it cannot adapt and, most importantly, reproduce.
The reduced genetic diversity, for example due to a bottleneck will unavoidably increase inbreeding for the entire population. This may mean that a species may not be able to adapt to changes in environmental conditions. Each individual will have similar immune systems, as immune systems are genetically based. When a species becomes endangered, the population may fall below a minimum whereby the forced interbreeding between the remaining animals will result in extinction.
Natural breedings include inbreeding by necessity, and most animals only migrate when necessary. In many cases, the closest available mate is a mother, sister, grandmother, father, brother, or grandfather. In all cases, the environment presents stresses to remove from the population those individuals who cannot survive because of illness.
There was an assumption that wild populations do not inbreed; this is not what is observed in some cases in the wild. However, in species such as , animals in wild horse or feral conditions often drive off the young of both sexes, thought to be a mechanism by which the species instinctively avoids some of the genetic consequences of inbreeding." ADVS 3910 Wild Horses Behavior", College of Agriculture, Utah State University. In general, many mammal species, including humanity's closest primate relatives, avoid close inbreeding possibly due to the deleterious effects.
In Central California, sea otters were thought to have been driven to extinction due to over hunting, until a small colony was discovered in the Point Sur region in the 1930s. Since then, the population has grown and spread along the central Californian coast to around 2,000 individuals, a level that has remained stable for over a decade. Population growth is limited by the fact that all Californian sea otters are descended from the isolated colony, resulting in inbreeding.
Cheetahs are another example of inbreeding. Thousands of years ago, the cheetah went through a population bottleneck that reduced its population dramatically so the animals that are alive today are all related to one another. A consequence from inbreeding for this species has been high juvenile mortality, low fecundity, and poor breeding success.
In a study on an island population of song sparrows, individuals that were inbred showed significantly lower survival rates than outbred individuals during a severe winter weather related population crash. These studies show that inbreeding depression and ecological factors have an influence on survival.
The Florida panther population was reduced to about 30 animals, so inbreeding became a problem. Several females were imported from Texas and now the population is better off genetically. UCF report on complex genetic health of Florida pantherJohnson, Warren E., David P. Onorato, Melody E. Roelke, E. Darrell Land, Mark Cunningham, Robert C. Belden, Roy McBride et al. "Genetic restoration of the Florida panther." Science 329, no. 5999 (2010): 1641-1645.
Another useful measure that describes the extent to which two individuals are related (say individuals A and B) is their coancestry coefficient f(A,B), which gives the probability that one randomly selected allele from A and another randomly selected allele from B are identical by descent. This is also denoted as the kinship coefficient between A and B.
A particular case is the self-coancestry of individual A with itself, f(A,A), which is the probability that taking one random allele from A and then, independently and with replacement, another random allele also from A, both are identical by descent. Since they can be identical by descent by sampling the same allele or by sampling both alleles that happen to be identical by descent, we have f(A,A) = 1/2 + F(A)/2.
Both the inbreeding and the coancestry coefficients can be defined for specific individuals or as average population values. They can be computed from genealogies or estimated from the population size and its breeding properties, but all methods assume no selection and are limited to neutral alleles.
There are several methods to compute this percentage. The two main ways are the path method How to compute and inbreeding coefficient (the path method), Braque du Bourbonnais. and the tabular method.
Typical coancestries between relatives are as follows:
Breeders must avoid breeding from individuals that demonstrate either homozygosity or heterozygosity for disease causing alleles. G2036 Culling the Commercial Cow Herd: BIF Fact Sheet, MU Extension . Extension.missouri.edu. Retrieved on 2013-03-05. The goal of preventing the transfer of deleterious alleles may be achieved by reproductive isolation, Neutering, or, in the extreme case, culling. Culling is not strictly necessary if genetics are the only issue in hand. Small animals such as cats and dogs may be sterilized, but in the case of large agricultural animals, such as cattle, culling is usually the only economic option.
The issue of casual breeders who inbreed irresponsibly is discussed in the following quotation on cattle:
Intensive selection for higher yield has increased relationships among animals within breed and increased the rate of casual inbreeding.
Many of the traits that affect profitability in crosses of modern dairy breeds have not been studied in designed experiments. Indeed, all crossbreeding research involving North American breeds and strains is very dated (McAllister, 2001) if it exists at all. S1008: Genetic Selection and Crossbreeding to Enhance Reproduction and Survival of Dairy Cattle (S-284) . Nimss.umd.edu. Retrieved on 2013-03-05.
As a result of long-term cooperation between USDA and dairy farmers which led to a revolution in dairy cattle productivity, the United States has since 1992 been the world’s largest supplier of dairy bull semen. However, US genomic technology has resulted in the US dairy cattle population becoming "the most inbred it’s ever been" and the rate of increase in US national milk yield has tapered off. Efforts are now being made to identify desirable genes in cattle breeds not yet optimized by US dairy breeders in order to apply hybrid vigor to the US dairy cattle population and thus propel US dairy technology to even higher levels of productivity.
The BBC produced two documentaries on dog inbreeding titled Pedigree Dogs Exposed and that document the negative health consequences of excessive inbreeding.
Inbreeding is especially problematic in small populations where the genetic variation is already limited. By inbreeding, individuals are further decreasing genetic variation by increasing homozygosity in the genomes of their offspring. Thus, the likelihood of deleterious recessive alleles to pair is significantly higher in a small inbreeding population than in a larger inbreeding population.
The fitness consequences of consanguineous mating have been studied since their scientific recognition by Charles Darwin in 1839.
The continuity of inbreeding is often either by choice or unavoidably due to the limitations of the geographical area. When by choice, the rate of consanguinity is highly dependent on religion and culture. In the Western world, some Anabaptism groups are highly inbred because they originate from small founder populations that have bred as a closed population.
Of the practicing regions, Middle Eastern and northern African nations show the greatest frequencies of consanguinity.
Among these populations with high levels of inbreeding, researchers have found several disorders prevalent among inbred offspring. In Lebanon, Saudi Arabia, Egypt, and Israel, the offspring of consanguineous relationships have an increased risk of congenital malformations, congenital heart defects, congenital hydrocephalus and neural tube defects. Furthermore, among inbred children in Palestine and Lebanon, there is a positive association between consanguinity and reported Cleft palate cases. Historically, populations of Qatar have engaged in consanguineous relationships of all kinds, leading to high risk of inheriting genetic diseases. As of 2014, around 5% of the Qatari population suffered from hereditary hearing loss; most were descendants of a consanguineous relationship. In 2017-2019, congenital anomalies due to inbreeding was the most common cause of death of babies belonging to the Pakistani and Bangladeshi ethnic groups in England and Wales.
Royal intermarriage was often practiced among European royal families, usually for interests of state. Over time, due to the relatively limited number of potential consorts, the gene pool of many ruling families grew progressively smaller, until all European royalty was related. This also resulted in many being descended from a certain person through many lines of descent, such as the numerous European royalty and nobility descended from the British Queen Victoria or King Christian IX of Denmark. The House of Habsburg was known for its intermarriages; the Prognathism often cited as an ill-effect. The closely related houses of Habsburg, Bourbon, Braganza and Wittelsbach also frequently engaged in first-cousin unions as well as the occasional double-cousin and uncle–niece marriages.
In ancient Egypt, royal women were believed to carry the bloodlines and so it was advantageous for a pharaoh to marry his sister or half-sister; in such cases a special combination between endogamy and polygamy is found. Normally, the old ruler's eldest son and daughter (who could be either siblings or half-siblings) became the new rulers. All rulers of the Ptolemaic dynasty uninterruptedly from Ptolemy IV (Ptolemy II married his sister but had no issue) were married to their brothers and sisters, so as to keep the Ptolemaic blood "pure" and to strengthen the line of succession. King Tutankhamun's mother is reported to have been the half-sister to his father, King Tut Mysteries Solved: Was Disabled, Malarial, and Inbred Cleopatra VII (also called Cleopatra VI) and Ptolemy XIII, who married and became co-rulers of ancient Egypt following their father's death, are the most widely known example.
Examples
Measures
Animals
Wild animals
Domestic animals
Meanwhile, milk production per cow per lactation increased from 17,444 lbs to 25,013 lbs from 1978 to 1998 for the Holstein breed. Mean breeding values for milk of Holstein cows increased by 4,829 lbs during this period. High producing cows are increasingly difficult to breed and are subject to higher health costs than cows of lower genetic merit for production (Cassell, 2001).
Linebreeding
Outcrossing
Laboratory animals
Humans
Effects
Prevalence
Royalty and nobility
See also
External links
|
|