Iddingsite is a microcrystalline rock that is derived from alteration of olivine. It is usually studied as a mineral, and consists of a mixture of remnant olivine, , , and . Debates over iddingsite's non-definite crystal structure caused it to be de-listed as an official mineral by the IMA; thus, it is properly referred to as a rock.
Iddingsite forms from the weathering of basalt in the presence of liquid water and can be described as a phenocryst, i.e. it has phanerite in a aphanite groundmass of a porphyritic rock. It is a pseudomorph that has a composition that is constantly transforming from the original olivine, passing through many stages of structural and chemical change to create a fully altered iddingsite.
Because iddingsite is constantly transforming it does not have a definite structure or a definite chemical composition. The chemical formula for iddingsite has been approximated as MgO * Fe2O3 * 3SiO2 * 4 H2O where MgO can be substituted by CaO. The geologic occurrence of iddingsite is limited to extrusive or that are formed by injection of magma near the surface. It is absent from deep-seated rocks and is found on . As it has been found on Martian meteorites, its ages have been calculated to obtain absolute ages when liquid water was at or near the surface of Mars.
It was named after Joseph P. Iddings, an American petrologist.
Iddingsite has been a subject researched in recent years because of its presence in the Martian meteorites. The formation of iddingsite requires liquid water, giving scientists an estimate as to when there has been liquid water on Mars.Swindle T. D. et al. "Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years". Meteoritics and Planetary Science 35, pp. 107–115, 2000. Potassium-argon dating of the meteorite samples showed that Mars had water on its surface anywhere from 1300 Ma to 650 Ma ago.
Olivine has an orthorhombic structure with a space group of Pbnm.Brown George. "A structural Study of Iddingsite from New South Wales, Australia". American Mineralogist. 44; 3–4, pp. 251–260, 1959. Olivine-like structures represent the stage that breaks down olivine with chemical changes introduced by alterations. These structures have the cell dimensions a = 4.8, b = 10.3 and c = 6.0 Å, a space group Pbnm and a d-spacing of 2.779 Å. Olivine axes are oriented in the following way: a is parallel to X-axis, b is parallel to Y-axis and c is parallel to Z-axis. X-ray diffraction patterns taken from iddingsite vary from true olivine pattern to patterns that are very diffuse spots. This is an indication of a distorted structure caused by atomic replacement creating a distorted atomic arrangement.
Goethite-like structures are common because goethite is in the same space group as olivine. This allows for goethite to grow within the olivine making the close packed planes common for both structures. Goethite-like structures have cell dimensions a=4.6, b= 10.0 and c = 3.0 angstrom. Diffraction spots caused by goethite are diffuse even though the material is well oriented. These structures are aligned parallel to the original olivine with a-axis (goethite) parallel to a-axis (olivine), b-axis (goethite) parallel to b-axis (olivine) and c-axis (goethite) parallel to c-axis (olivine). The preferred orientation of olivine and goethite are when they are parallel with their z-axis.
Hematite-like structures occur in a similar fashion as goethite. Hematite has a triangular crystal system and experiences twinning by having an approximately hexagonal close-packed oxygen framework and has a structural orientation similar to olivine. When twinning occurs, the orientation of hematite-like iddingsite is as follows: a-axis of olivine is parallel to the c-axis of hematite, the b-axis of olivine is parallel to the +/− 010 plane of hematite and the c-axis of olivine is parallel to the +/− 210 plane of hematite. This hematite structure is very well oriented and occurs because of the high stability of the anion framework and because the cations can be made to migrate throughout the structure.
Spinel structures consist of multiple oxide structures that are cubic and have cubic close packing. The spinel structures have a twined orientation and are controlled by close packed sheets. This twined orientation is can be described as: the a-axis of olivine is parallel to the (111) spinel face. The b-axis of olivine is parallel to +/− (112) and the c-axis of olivine is parallel to +/− (110) spinel face. These alterations tend to be rare in iddingsite but when they are present they show a sharp diffraction spot making them easily identified.
Silicate structures are the most variable among all of the structures discussed. A common silicate structure consists of a hexagonal array of cylinders whose length is parallel to the x-axis of the olivine and the side of the hexagonal cell is parallel to the z-axis of olivine. Diffraction effects caused by this structure can be attributed to the formation of sheet silicate structures that have a very disordered stacking of layers.
Some samples that have completed their alterations have miscellaneous cleavage thereby making it not a very good diagnostic tool. Most samples have no cleavage at all. Thin sections from an occurrence near Lismore, New South Wales, Australia, have a lamellar habit with one well developed cleavage and two subsidiary cleavages at right angles to each other. It has an alpha of 1.7 to 1.68 and a gamma of 1.71 to 1.72 and a birefringence of 0.04. On average iddingsite has a density of approximately 2.65 g/cm3 and a hardness of 3 (calcite). Variability in these values are expected due to the differences in crystal structure that can occur from different stages in the alteration process.
Composition
Geologic occurrence
Structure
Physical properties
Additional sources
External links
|
|