Gyromitrin is a toxin and carcinogen present in several members of the fungal genus Gyromitra, like G. esculenta. Its formula is . It is unstable and is easily hydrolysis to the toxic compound monomethylhydrazine . Monomethylhydrazine acts on the central nervous system and interferes with the normal use and function of vitamin B6. Poisoning results in nausea, stomach cramps, and diarrhea, while severe poisoning can result in , jaundice, or even coma or death. Exposure to monomethylhydrazine has been shown to be carcinogenic in small mammals.
Other N-methyl- N-formylhydrazone derivatives have been isolated in subsequent research, although they are present in smaller amounts. These other compounds would also produce monomethylhydrazine when hydrolyzed, although it remains unclear how much each contributes to the false morel's toxicity.
The toxins react with pyridoxal 5-phosphate—the activated form of pyridoxine—and form a hydrazone. This reduces production of the neurotransmitter GABA via decreased activity of glutamic acid decarboxylase, which gives rise to the neurological symptoms. MMH also causes oxidative stress leading to methemoglobinemia. Additionally during the metabolism of MMH, N-methyl- N-formylhydrazine is produced; this then undergoes cytochrome P450 regulated oxidative metabolism which via reactive nitrosamide intermediates leads to formation of methyl radicals which lead to liver necrosis. Inhibition of diamine oxidase (histaminase) elevates histamine levels, resulting in headaches, nausea, vomiting, and abdominal pain. Giving pyridoxine to rats poisoned with gyromitrin inhibited seizures, but did not prevent liver damage.
The toxicity of gyromitrin varies greatly according to the animal species being tested. Tests of administering gyromitrin to mice to observe the correlation between the formation of MMH and stomach pH have been performed. Higher levels of formed MMH were observed in the stomachs of the mice than were observed in control tests under less acidic conditions. The conclusions drawn were that the formation of MMH in a stomach is likely a result of acid hydrolysis of gyromitrin rather than drug metabolism. Based on this animal experimentation, it is reasonable to infer that a more acidic stomach environment would transform more gyromitrin into MMH, independent of the species in which the reaction is occurring.
The median lethal dose (LD50) is 244 mg/kg in mice, 50–70 mg/kg in rabbits, and 30–50 mg/kg in humans. The toxicity is largely due to the MMH that is created; about 35% of ingested gyromitrin is transformed to MMH. Based on this conversion, the LD50 of MMH in humans has been estimated to be 1.6–4.8 mg/kg in children, and 4.8–8 mg/kg in adults.
Gyromitrin content can differ greatly in different populations of the same species. For example, G. esculenta collected from Europe is "almost uniformly toxic", compared to rarer reports of toxicity from specimens collected from the US west of the Rocky Mountains. A 1985 study reported that the stems of G. esculenta contained twice as much gyromitrin as the cap, and that mushrooms collected at higher altitudes contained less of the toxin than those collected at lower altitudes.
The gyromitrin content in false morels has been reported to be in the range of 40–732 milligrams of gyromitrin per kilogram of mushrooms (wet weight). Gyromitrin is volatile and water soluble, and can be mostly removed from the mushrooms by cutting them to small pieces and repeatedly boiling them in copious amounts of water under good ventilation. Prolonged periods of air drying also reduces levels of the toxin. In the US, there are typically between 30 and 100 cases of gyromitrin poisoning requiring medical attention. The mortality rate for cases worldwide is about 10%.
In some cases there may be an asymptomatic phase following the initial symptoms which is then followed by more significant toxicity including nephrotoxicity, Hepatotoxicity, and neurotoxicity including seizures and coma. These signs usually develop within 1–3 days in serious cases. The patient develops jaundice and the liver and spleen become enlarged, in some cases blood sugar levels will rise (hyperglycemia) and then fall (hypoglycemia) and liver toxicity is seen. Additionally, intravascular hemolysis causes destruction of red blood cells resulting in increases in free hemoglobin and hemoglobinuria, which can lead to kidney toxicity or kidney failure. Methemoglobinemia may also occur in some cases. This is where higher than normal levels of methemoglobin—a form of hemoglobin that can not carry oxygen—are found in the blood. It causes the patient to become short of breath and cyanosis. Cases of severe poisoning may progress to a terminal neurological phase, with delirium, muscle and seizures, and mydriasis progressing to coma, circulatory collapse, and respiratory arrest. Death may occur from five to seven days after consumption.
Toxic effects from gyromitrin may also be accumulated from sub-acute and chronic exposure due to "professional handling"; symptoms include pharyngitis, bronchitis, and keratitis.
Pyridoxine, also known as vitamin B6, can be used to counteract the Enzyme inhibitor by MMH on the pyridoxine-dependent step in the synthesis of the neurotransmitter GABA. Thus GABA synthesis can continue and symptoms are relieved. Pyridoxine, which is only useful for the neurological symptoms and does not decrease hepatic toxicity, is given at a dose of 25 mg/kg; this can be repeated up to a maximum total of 15 to 30 g daily if symptoms do not improve. are given to control seizures; as they also modulate GABA receptors they may potentially increase the effect of pyridoxine. Additionally MMH inhibits the chemical transformation of folic acid into its active form, folinic acid, this can be treated by folinic acid given at 20–200 mg daily.
Gyromitrin may not be considered especially toxic, which may lead people to underestimate its poisonous qualities. In Poland, from 1953 to 1962, there were 138 documented poisonings, only two of which were fatal. Of 706 calls to the Swedish poison center regarding Gyromitra mushrooms between 1994 and 2002, there were no fatalities. In the United States from 2001 to 2011, 448 calls to poison centers involved gyromitrin. The North American Mycological Association (NAMA) reported on 27 cases over 30 years, none of which were fatal. Although poisonings due to gyromitrin are not often fatal, it is still highly toxic to the liver. Of those 27 analyzed cases, nine developed liver injury; there were also three instances of acute kidney injury. As gyromitrin is not especially stable, most poisonings apparently occur from the consumption of the raw or insufficiently cooked "false morel" mushrooms.
There are also possibly several strains of Gyromitra esculenta that vary from region to region and have differing levels of the toxin. For example, there is a less toxic variety that grows west of the Rockies in North America. The toxin may also diminish as the seasons change, as most exposures occur in the Spring. This may help explain some conflicting reports on whether the fungus is edible or not.
Occurrence and removal
Detection
Identification
Poisoning
Symptoms
Treatment
Toxicity controversy
Carcinogenicity
Books cited
External links
|
|