In digital photography, computer-generated imagery, and colorimetry, a greyscale (more common in Commonwealth English) or grayscale (more common in American English) image is one in which the value of each pixel is a single sample representing only an amount of light; that is, it carries only intensity information. Grayscale images, are black-and-white or gray monochrome, and composed exclusively of shades of gray. The contrast ranges from black at the weakest intensity to white at the strongest.
Grayscale images are distinct from one-bit bi-tonal black-and-white images, which, in the context of computer imaging, are images with only two : black and white (also called bilevel or ). Grayscale images have many shades of gray in between.
Grayscale images can be the result of measuring the intensity of light at each pixel according to a particular weighted combination of frequencies (or wavelengths), and in such cases they are monochromatic proper when only a single frequency (in practice, a narrow band of frequencies) is captured. The frequencies can in principle be from anywhere in the electromagnetic spectrum (e.g. infrared, visible spectrum, ultraviolet, etc.).
A colorimetry (or more specifically photometric) grayscale image is an image that has a defined grayscale colorspace, which maps the stored numeric sample values to the achromatic channel of a standard colorspace, which itself is based on measured properties of human vision.
If the original color image has no defined colorspace, or if the grayscale image is not intended to have the same human-perceived achromatic intensity as the color image, then there is no unique mapping from such a color image to a grayscale image.
The intensity of a pixel is expressed within a given range between a minimum and a maximum, inclusive. This range is represented in an abstract way as a range from 0 (or 0%) (total absence, black) and 1 (or 100%) (total presence, white), with any fractional values in between. This notation is used in academic papers, but this does not define what "black" or "white" is in terms of colorimetry. Sometimes the scale is reversed, as in printing where the numeric intensity denotes how much ink is employed in halftoning, with 0% representing the paper white (no ink) and 100% being a solid black (full ink).
In computing, although the grayscale can be computed through rational numbers, image pixels are usually quantized to store them as unsigned integers, to reduce the required storage and computation. Some early grayscale monitors can only display up to sixteen different shades, which would be stored in Binary code form using 4 . But today grayscale images intended for visual display are commonly stored with 8 bits per sampled pixel. This pixel Color depth allows 256 different intensities (i.e., shades of gray) to be recorded, and also simplifies computation as each pixel sample can be accessed individually as one full byte. However, if these intensities were spaced equally in proportion to the amount of physical light they represent at that pixel (called a linear encoding or scale), the differences between adjacent dark shades could be quite noticeable as banding artifacts, while many of the lighter shades would be "wasted" by encoding a lot of perceptually-indistinguishable increments. Therefore, the shades are instead typically spread out evenly on a gamma correction, which better approximates uniform perceptual increments for both dark and light shades, usually making these 256 shades enough to avoid noticeable increments.
Technical uses (e.g. in medical imaging or remote sensing applications) often require more levels, to make full use of the sensor accuracy (typically 10 or 12 bits per sample) and to reduce rounding errors in computations. Sixteen bits per sample (65,536 levels) is often a convenient choice for such uses, as computers manage 16-bit words efficiently. The TIFF and PNG (among other) image file formats support 16-bit grayscale natively, although browsers and many imaging programs tend to ignore the low order 8 bits of each pixel. Internally for computation and working storage, image processing software typically uses integer or floating-point numbers of size 16 or 32 bits.
To convert a color from a colorspace based on a typical gamma correction (nonlinear) RGB color model to a grayscale representation of its luminance, the gamma compression function must first be removed via gamma expansion (linearization) to transform the image to a linear RGB colorspace, so that the appropriate weighted sum can be applied to the linear color components () to calculate the linear luminance , which can then be gamma-compressed back again if the grayscale result is also to be encoded and stored in a typical nonlinear colorspace.
For the common sRGB color space, gamma expansion is defined as
where represents any of the three gamma-compressed sRGB primaries (, , and , each in range 0,1) and is the corresponding linear-intensity value (, , and , also in range 0,1). Then, linear luminance is calculated as a weighted sum of the three linear-intensity values. The sRGB color space is defined in terms of the CIE 1931 linear luminance , which is given by
These three particular coefficients represent the intensity (luminance) perception of typical trichromat humans to light of the precise Rec. 709 additive primary colors (chromaticities) that are used in the definition of sRGB. Human vision is most sensitive to green, so this has the greatest coefficient value (0.7152), and least sensitive to blue, so this has the smallest coefficient (0.0722). To encode grayscale intensity in linear RGB, each of the three color components can be set to equal the calculated linear luminance (replacing by the values to get this linear grayscale), which then typically needs to be gamma correction to get back to a conventional non-linear representation. For sRGB, each of its three primaries is then set to the same gamma-compressed given by the inverse of the gamma expansion above as
Because the three sRGB components are then equal, indicating that it is actually a gray image (not color), it is only necessary to store these values once, and we call this the resulting grayscale image. This is how it will normally be stored in sRGB-compatible image formats that support a single-channel grayscale representation, such as JPEG or PNG. Web browsers and other software that recognizes sRGB images should produce the same rendering for such a grayscale image as it would for a "color" sRGB image having the same values in all three color channels.
Normally these colorspaces are transformed back to nonlinear R'G'B' before rendering for viewing. To the extent that enough precision remains, they can then be rendered accurately.
But if the luma component Y' itself is instead used directly as a grayscale representation of the color image, luminance is not preserved: two colors can have the same luma but different CIE linear luminance (and thus different nonlinear as defined above) and therefore appear darker or lighter to a typical human than the original color. Similarly, two colors having the same luminance (and thus the same ) will in general have different luma by either of the luma definitions above.
Here is an example of color channel splitting of a full RGB color image. The column at left shows the isolated color channels in natural colors, while at right there are their grayscale equivalences:
The reverse is also possible: to build a full-color image from their separate grayscale channels. By mangling channels, using offsets, rotating and other manipulations, artistic effects can be achieved instead of accurately reproducing the original image.
|
|