Product Code Database
Example Keywords: take -light $11-156
barcode-scavenger
   » » Wiki: Frustum
Tag Wiki 'Frustum'.
Tag

In , a ; (: frusta or frustums) is the portion of a (normally a pyramid or a cone) that lies between two cutting the solid. In the case of a pyramid, the base faces are and the side faces are . A right frustum is a or a right cone truncated perpendicularly to its axis; otherwise, it is an oblique frustum. In a or truncated pyramid, the truncation plane is necessarily parallel to the cone's base, as in a frustum. If all its edges are forced to become of the same length, then a frustum becomes a prism (possibly oblique or/and with irregular bases).


Elements, special cases, and related concepts
A frustum's axis is that of the original cone or pyramid. A frustum is circular if it has circular bases; it is right if the axis is perpendicular to both bases, and oblique otherwise.

The height of a frustum is the perpendicular distance between the planes of the two bases.

Cones and pyramids can be viewed as degenerate cases of frusta, where one of the cutting planes passes through the apex (so that the corresponding base reduces to a point). The pyramidal frusta are a subclass of .

Two frusta with two congruent bases joined at these congruent bases make a .


Formulas

Volume
The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty ():
V = \frac{h}{3}\left(a^2 + ab + b^2\right),
where and are the base and top side lengths, and is the height.

The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus.

The of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":

V = \frac{h_1 B_1 - h_2 B_2}{3},
where and are the base and top areas, and and are the perpendicular heights from the apex to the base and top planes.

Considering that

\frac{B_1}{h_1^2} = \frac{B_2}{h_2^2} = \frac{\sqrt{B_1B_2}}{h_1h_2} = \alpha,
the formula for the volume can be expressed as the third of the product of this proportionality, \alpha, and of the difference of the cubes of the heights and only:
V = \frac{h_1 \alpha h_1^2 - h_2 \alpha h_2^2}{3} = \alpha\frac{h_1^3 - h_2^3}{3}.
By using the identity , one gets:
V = (h_1 - h_2)\alpha\frac{h_1^2 + h_1h_2 + h_2^2}{3},
where is the height of the frustum.

Distributing \alpha and substituting from its definition, the of areas and is obtained:

\frac{B_1 + \sqrt{B_1B_2} + B_2}{3};
the alternative formula is therefore:
V = \frac{h}{3}\left(B_1 + \sqrt{B_1B_2} + B_2\right).
Heron of Alexandria is noted for deriving this formula, and with it, encountering the : the square root of negative one.Nahin, Paul. An Imaginary Tale: The story of . Princeton University Press. 1998

In particular:

  • The volume of a circular cone frustum is:
:V = \frac{\pi h}{3}\left(r_1^2 + r_1r_2 + r_2^2\right),
where and are the base and top radii.

  • The volume of a pyramidal frustum whose bases are regular -gons is:
:V = \frac{nh}{12}\left(a_1^2 + a_1a_2 + a_2^2\right)\cot\frac{\pi}{n},
where and are the base and top side lengths.


Surface area
For a right circular conical frustum the s is

the lateral surface area is

and the total surface area is

where r1 and r2 are the base and top radii respectively.


Examples
  • On the back (the reverse) of a United States one-dollar bill, a pyramidal frustum appears on the reverse of the Great Seal of the United States, surmounted by the Eye of Providence.
  • , , and certain ancient Native American mounds also form the frustum of one or more pyramids, with additional features such as stairs added.
  • .
  • The John Hancock Center in , is a frustum whose bases are rectangles.
  • The Washington Monument is a narrow square-based pyramidal frustum topped by a small pyramid.
  • The in 3D computer graphics is a virtual photographic or video camera's usable field of view modeled as a pyramidal frustum.
  • In the translation of 's short-story collection , the poem Love and claims that "every frustum longs to be a cone".
  • and typical are everyday examples of conical frustums.
  • Drinking glasses and some are also some examples.
  • , Neringa, Lithuania]]'': a wooden structure in Lithuania.
  • Valençay cheese
  • candies


See also
  • Spherical frustum


Notes

External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time