Francium is a chemical element; it has chemical symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain in which it appears), has a half-life of only 22 minutes. It is the second-most electronegative element, behind only caesium, and is the second rarest naturally occurring element (after astatine). Francium's isotopes decay quickly into astatine, radium, and radon. The electronic structure of a francium atom is Rn 7s1; thus, the element is classed as an alkali metal.
As a consequence of its extreme instability, bulk francium has never been seen. Because of the general appearance of the other elements in its periodic table column, it is presumed that francium would appear as a highly reactive metal if enough could be collected together to be viewed as a bulk solid or liquid. Obtaining such a sample is highly improbable since the extreme heat of decay resulting from its short half-life would immediately vaporize any viewable quantity of the element.
Francium was discovered by Marguerite Perey in France (from which the element takes its name) on January 7, 1939. Before its discovery, francium was referred to as eka-caesium or ekacaesium because of its conjectured existence below caesium in the periodic table. It was the last element first discovered in nature, rather than by synthesis. Outside the laboratory, francium is extremely rare, with trace amounts found in uranium ores, where the isotope francium-223 (in the family of uranium-235) continually forms and decays. As little as exists at any given time throughout the Earth's crust; aside from francium-223 and francium-221, its other isotopes are entirely synthetic. The largest amount produced in the laboratory was a cluster of more than 300,000 atoms.
Francium is an alkali metal whose chemical properties mostly resemble those of caesium. A heavy element with a single valence electron, it has the highest equivalent weight of any element. Liquid francium—if created—should have a surface tension of 0.05092 N/m at its melting point. Francium's melting point was estimated to be around ;
Linus Pauling estimated the electronegativity of francium at 0.7 on the Pauling scale, the same as caesium; the value for caesium has since been refined to 0.79, but there are no experimental data to allow a refinement of the value for francium. Francium has a slightly higher ionization energy than caesium, 392.811(4) kJ/mol as opposed to 375.7041(2) kJ/mol for caesium, as would be expected from relativistic effects, and this would imply that caesium is the less electronegative of the two. Francium should also have a higher electron affinity than caesium and the Fr− ion should be more polarizability than the Cs− ion.
Francium-223 is the most stable isotope, with a half-life of 21.8 minutes, and it is highly unlikely that an isotope of francium with a longer half-life will ever be discovered or synthesized. Francium-223 is a fifth product of the uranium-235 decay series as a daughter isotope of actinium-227; thorium-227 is the more common daughter.
Francium-221 has a half-life of 4.8 minutes. It is the ninth product of the neptunium decay series as a daughter isotope of actinium-225. Francium-221 then decays into astatine-217 by alpha decay (6.457 MeV decay energy). Although all primordial 237Np is extinct, the neptunium decay series continues to exist naturally in tiny traces due to (n,2n) knockout reactions in natural 238U. Francium-222, with a half-life of 14 minutes, may be produced as a result of the beta decay of natural radon-222; this process has nonetheless not yet been observed, and it is unknown whether this process is energetically possible.
The least stable ground state isotope is francium-215, with a half-life of 90 ns: it undergoes a 9.54 MeV alpha decay to astatine-211.
Francium's ability to be synthesized, trapped, and cooled, along with its relatively simple atom, has made it the subject of specialized spectroscopy experiments. These experiments have led to more specific information regarding and the coupling constants between subatomic particles. Studies on the light emitted by Optical tweezers francium-210 ions have provided accurate data on transitions between atomic energy levels which are fairly similar to those predicted by quantum theory. Francium is a prospective candidate for searching for CP violation.
Soviet chemist Dmitry Dobroserdov was the first scientist to claim to have found eka-caesium, or francium. In 1925, he observed weak radioactivity in a sample of potassium, another alkali metal, and incorrectly concluded that eka-caesium was contaminating the sample (the radioactivity from the sample was from the naturally occurring potassium radioisotope, potassium-40). He then published a thesis on his predictions of the properties of eka-caesium, in which he named the element russium after his home country. Shortly thereafter, Dobroserdov began to focus on his teaching career at the Polytechnic Institute of Odesa, and he did not pursue the element further.
The following year, English chemists Gerald J. F. Druce and Frederick H. Loring analyzed X-ray photographs of manganese(II) sulfate. They observed spectral lines which they presumed to be of eka-caesium. They announced their discovery of element 87 and proposed the name alkalinium, as it would be the heaviest alkali metal.
In 1930, Fred Allison of the Alabama Polytechnic Institute claimed to have discovered element 87 (in addition to 85) when analyzing pollucite and lepidolite using his magneto-optical machine. Allison requested that it be named virginium after his home state of Virginia, along with the symbols Vi and Vm. In 1934, H.G. MacPherson of UC Berkeley disproved the effectiveness of Allison's device and the validity of his discovery.
In 1936, Romanian physicist Horia Hulubei and his French colleague Yvette Cauchois also analyzed pollucite, this time using their high-resolution X-ray apparatus. They observed several weak emission lines, which they presumed to be those of element 87. Hulubei and Cauchois reported their discovery and proposed the name moldavium, along with the symbol Ml, after Moldavia, the Romanian province where Hulubei was born. In 1937, Hulubei's work was criticized by American physicist F. H. Hirsh Jr., who rejected Hulubei's research methods. Hirsh was certain that eka-caesium would not be found in nature, and that Hulubei had instead observed mercury or bismuth X-ray lines. Hulubei insisted that his X-ray apparatus and methods were too accurate to make such a mistake. Because of this, Jean Baptiste Perrin, Nobel Prize winner and Hulubei's mentor, endorsed moldavium as the true eka-caesium over Marguerite Perey's recently discovered francium. Perey took pains to be accurate and detailed in her criticism of Hulubei's work, and finally she was credited as the sole discoverer of element 87. All other previous purported discoveries of element 87 were ruled out due to francium's very limited half-life.
Perey named the new isotope actinium-K (it is now referred to as francium-223) and in 1946, she proposed the name catium (Cm) for her newly discovered element, as she believed it to be the most electropositive cation of the elements. Irène Joliot-Curie, one of Perey's supervisors, opposed the name due to its connotation of cat rather than cation; furthermore, the symbol coincided with that which had since been assigned to curium. Perey then suggested francium, after France. This name was officially adopted by the International Union of Pure and Applied Chemistry (IUPAC) in 1949, becoming the second element after gallium to be named after France. It was assigned the symbol Fa, but it was revised to the current Fr shortly thereafter. Francium was the last element discovered in nature, rather than synthesized, following hafnium and rhenium. Further research into francium's structure was carried out by, among others, Sylvain Lieberman and his team at CERN in the 1970s and 1980s.
The francium atoms leave the gold target as ions, which are neutralized by collision with yttrium and then isolated in a magneto-optical trap (MOT) in a gaseous unconsolidated state. Although the atoms only remain in the trap for about 30 seconds before escaping or undergoing nuclear decay, the process supplies a continual stream of fresh atoms. The result is a steady state containing a fairly constant number of atoms for a much longer time. The original apparatus could trap up to a few thousand atoms, while a later improved design could trap over 300,000 at a time. Sensitive measurements of the light emitted and absorbed by the trapped atoms provided the first experimental results on various transitions between atomic energy levels in francium. Initial measurements show very good agreement between experimental values and calculations based on quantum theory. The research project using this production method relocated to TRIUMF in 2012, where over 106 francium atoms have been held at a time, including large amounts of 209Fr in addition to 207Fr and 221Fr.
Other synthesis methods include bombarding radium with neutrons, and bombarding thorium with protons, deuterium, or helium .
223Fr can also be isolated from samples of its parent 227Ac, the francium being milked via elution with NH4Cl–CrO3 from an actinium-containing cation exchanger and purified by passing the solution through a silicon dioxide compound loaded with barium sulfate.
In 1996, the Stony Brook group trapped 3000 atoms in their MOT, which was enough for a video camera to capture the light given off by the atoms as they fluoresce. Francium has not been synthesized in amounts large enough to weigh.
|
|