A firefighter (or fire fighter or fireman) is a first responder trained in public safety and emergency response such as firefighting, primarily to control and extinguish and respond to emergencies such as Dangerous goods, medical emergencies, road traffic collisions and other emergencies that threaten life, property and the environment, as well as to rescue persons from confinement or dangerous situations and preserve evidence.
Firefighters may also provide ordinance regulations, safety requirements, and administrative public functions for the communities and areas they are subject to jurisdiction to. Male firefighters are sometimes referred to as firemen (and, less commonly, female firefighters as firewomen).
The fire department, also known in some countries as the fire brigade or fire service, is one of the three main emergency services. From to aboard , firefighters have become ubiquitous around the world.
The skills required for safe operations are regularly practiced during training evaluations throughout a firefighter's career. Initial firefighting skills are normally taught through local, regional or state-approved fire academies or training courses. Depending on the requirements of a department, additional skills and certifications may also be acquired at this time.
Firefighters work closely with other emergency response agencies such as the police and emergency medical service. A firefighter's role may overlap with both. Fire investigators or investigate the cause of a fire. If the fire was caused by arson or negligence, their work will overlap with law enforcement. Firefighters may also provide some degree of emergency medical service (EMS).
may be attacked with either "interior" or "exterior" resources, or both. Interior crews, using the "two in, two out" rule, may extend fire hose lines inside the building, find the fire and cool it with water. Exterior crews may direct water into windows and other openings, or against any nearby exposed to the initial fire. Hose streams directed into the interior through exterior wall apertures may conflict and jeopardize interior fire attack crews.
Buildings that are made of flammable materials such as wood are different from building materials such as concrete. Generally, a "fire-resistant" building is designed to limit fire to a small area or floor. Other floors can be safe by preventing smoke inhalation and damage. All buildings suspected or on fire must be evacuated, regardless of fire rating.
When fire departments respond to structure fires, the priorities are life safety, incident stabilization, and property conservation. Some tactics used to achieve positive results at a structure fire include scene size-up, door control, coordinated ventilation, and exterior attack prior to entry.
When the first fire department arrives on-scene at a structure fire, scene size-up must occur to develop the appropriate strategy (offensive or defensive) and tactics. With scene size-up, a risk assessment must also occur to determine the risks of making an interior fire attack. When an incident's critical factors and the risk management plan indicate an offensive strategy, the incident commander will define the tactical objectives for entering the structure. Offensive incident action plans (tactics) are based on the standard offensive tactical priorities and their corresponding completion benchmarks.
Some firefighting tactics may appear to be destructive, but often serve specific needs. For example, during ventilation, firefighters are forced to either open holes in the roof or floors of a structure (called vertical ventilation), or open windows and walls (called horizontal ventilation) to remove smoke and heated gases from the interior of the structure. Such ventilation methods are also used to improve interior visibility to locate victims more quickly. Ventilation helps to preserve the life of trapped or unconscious individuals as it releases the poisonous gases from inside the structure. Vertical ventilation is vital to firefighter safety in the event of a flashover or backdraft scenario. Releasing the flammable gases through the roof eliminates the possibility of a backdraft, and the removal of heat can reduce the possibility of a flashover. Flashovers, due to their intense heat () and explosive temperaments, are commonly fatal to firefighter personnel. Precautionary methods, such as smashing a window, reveal backdraft situations before the firefighter enters the structure and is met with the circumstance head-on. Firefighter safety is the number one priority.
Whenever possible during a structure fire, property is moved into the middle of a room and covered with a salvage cover, a heavy cloth-like tarp. Various steps such as retrieving and protecting valuables found during suppression or overhaul, evacuating water, and boarding windows and roofs can divert or prevent post-fire runoff.
In such departments, firefighters are often certified as emergency medical technicians in order to deliver basic life support, and more rarely as paramedics to deliver advanced life support. In the United Kingdom, where fire services and EMS are run separately, fire service co-responding has been introduced more recently. Another point of variation is whether the firefighters respond in a fire engine or a response car.
fire sprinkler have a proven record for controlling and extinguishing unwanted fires. Many fire officials recommend that every building, including residences, have fire sprinkler systems. Correctly working sprinklers in a residence greatly reduce the risk of death from a fire. With the small rooms typical of a residence, one or two sprinklers can cover most rooms. In the United States, the housing industry trade groups have lobbied at the State level to prevent the requirement for fire sprinklers in one or two family homes.
Other methods of fire prevention are by directing efforts to reduce known hazardous conditions or by preventing dangerous acts before tragedy strikes. This is normally accomplished in many innovative ways such as conducting presentations, distributing safety brochures, providing news articles, writing public safety announcements (PSA) or establishing meaningful displays in well-visited areas. Ensuring that each household has working , is educated in the proper techniques of fire safety, has an evacuation route and rendezvous point is of top priority in public education for most fire prevention teams in almost all fire department localities.
Fire investigators, who are experienced firefighters trained in fire cause determinism, are dispatched to fire scenes in order to investigate and determine whether the fire was a result of an accident or intentional. Some fire investigators have full law enforcement powers to investigate and arrest suspected arsonists.
Firefighters often carry personal self-rescue . The ropes are generally long and can provide a firefighter (that has enough time to deploy the rope) a partially controlled exit out of an elevated window. Lack of a personal rescue rope is cited in the deaths of two New York City firefighters, Lt. John Bellew and Lt. Curtis Meyran, who died after they jumped from the fourth floor of a burning apartment building in the Bronx. Of the four firefighters who jumped and survived, only one of them had a self-rescue rope. Since the incident, the Fire Department of New York City has issued self-rescue ropes to their firefighters.
Hyperthermia is a major issue for firefighters as they wear insulated clothing and cannot shed the heat generated from physical exertion. Early detection of heat issues is critical to stop dehydration and heat stress becoming fatal. Early onset of heat stress affects cognitive function which combined with operating in dangerous environment makes heat stress and dehydration a critical issue to monitor. Firefighter physiological status monitoring is showing promise in alerting EMS and commanders to the status of their people on the fire ground. Devices such as PASS device alert 10–20 seconds after a firefighter has stopped moving in a structure. Physiological status monitors measure a firefighter's vital sign status, fatigue and exertion levels and transmit this information over their voice radio. This technology allows a degree of early warning to physiological stress. These devicesZephyr Technologies BioHarness BT are similar to technology developed for Future Force Warrior and give a measure of exertion and fatigue. They also tell the people outside a building when they have stopped moving or fallen. This allows a supervisor to call in additional engines before the crew get exhausted and also gives an early warning to firefighters before they run out of air, as they may not be able to make voice calls over their radio. Current OSHA tables exist for heat injury and the allowable amount of work in a given environment based on temperature, humidity and solar loading.
Firefighters are also at risk for developing rhabdomyolysis. Rhabdomyolysis is the breakdown of muscle tissue and has many causes including heat exposure, high core body temperature, and prolonged, intense exertion. Routine firefighter tasks, such as carrying extra weight of equipment and working in hot environments, can increase firefighters' risk for rhabdomyolysis.
The most concerning materials that make up these products are PFAS chemicals. Studies linked PFAS exposure with health effects including major neurological defects and cancer. Long term exposure to these chemicals is a notable concern.
While many hazardous chemicals used in fire-fighting materials, such as penta-bromdiphenyl ether have already been banned by the government, they are almost immediately replaced by a new substance with similar harmful effects. After banning penta-bromodiphenyl ether, chlorinated tris, chloroalkyl phospahtes, halogenated aryl esters, and tetrabromophthalate dio diester were used instead. While these chemicals are constantly changing with attempts to make it safer for the public, firefighters have constant, up-close exposure that can put them at increased risk.
Many hazardous substances are commonly found in fire debris. Silicon dioxide can be found in concrete, roofing tiles, or it may be a naturally occurring element. Occupational exposures to silica dust can cause silicosis, lung cancer, pulmonary tuberculosis, airway diseases, and some additional non-respiratory diseases. Inhalation of asbestos can result in various diseases including asbestosis, lung cancer, and mesothelioma. Sources of metals exposure include burnt or melted electronics, cars, refrigerators, stoves, etc. Fire debris cleanup workers may be exposed to these metals or their combustion products in the air or on their skin. These metals may include beryllium, cadmium, chromium, cobalt, lead, manganese, nickel, and many more. Polyaromatic hydrocarbons (PAHs), some of which are carcinogenic, come from the incomplete combustion of organic materials and are often found as a result of structural and wildland fires.IARC 2002.
Safety hazards of fire cleanup include the risk of reignition of smoldering debris, electrocution from downed or exposed electrical lines or in instances where water has come into contact with electrical equipment. Structures that have been burned may be unstable and at risk of sudden collapse.
Standard personal protective equipment for fire cleanup include , goggles or safety glasses, heavy , or other hearing protection, , and fall protection devices. Hazard controls for electrical injury include assuming all power lines are energized until confirmation they are de-energized, and grounding power lines to guard against electrical feedback, and using appropriate personal protective equipment. Proper respiratory protection can protect against hazardous substances. Proper ventilation of an area is an engineering control that can be used to avoid or minimize exposure to hazardous substances. When ventilation is insufficient or dust cannot be avoided, personal protective equipment such as N95 respirators can be used.
During fire suppression activities a firefighter can reach peak or near peak heart rates which can act as a trigger for a cardiac event. For example,
/research/CardioChemRisksModernFF_InterimReport2016.pdf
A 2015 retrospective longitudinal study showed that firefighters are at higher risk for certain types of cancer. Firefighters had mesothelioma, which is caused by asbestos exposure, at twice the rate of the non-firefighting working population. Younger firefighters (under age 65) also developed bladder cancer and prostate cancer at higher rates than the general population. The risk of bladder cancer may be present in female firefighters, but research is inconclusive as of 2014. Preliminary research from 2015 on a large cohort of US firefighters showed a direct relationship between the number of hours spent fighting fires and lung cancer and leukemia mortality in firefighters. This link is a topic of continuing research in the medical community, as is cancer mortality in general among firefighters.
In addition to Epidemiology studies, mechanistic studies have used to investigate exposures' effects on biological changes that could be related to cancer development. Several of these studies have found evidence of DNA damage, oxidative stress, and Epigenetics changes related to firefighters' exposures.
Firefighters regularly encounter Carcinogen and hazardous contaminants, which is thought to contribute to their excess cancer risk. Dozens of chemicals classified by the International Agency for Research on Cancer (IARC) as known or probable carcinogens have been identified on the fireground. Several studies have documented airborne and/or dermal exposures to carcinogenic compounds during firefighting, as well as contamination on Bunker gear and other equipment worn by firefighters. Some of these compounds have been shown to absorb into firefighters' bodies.
In addition to chemical exposures, firefighters often work 24-hr shifts or longer, and may respond to emergencies at night. Night shift work has been classified as a probable human carcinogen by IARC. Some firefighters also work with Dangerous goods and trained to control and clean up these dangerous materials, such as and chemical accidents. As firefighters combat a fire and clean up hazardous materials, there is a risk of harmful chemicals coming in contact with their skin if it penetrates their personal protective equipment (PPE). In June 2022, IARC classified occupational exposure as a firefighter as "carcinogenic to humans."
Firefighters are in addition to carcinogenic chemicals, firefighters can be exposed to radiation (alpha radiation, beta radiation, and gamma radiation).
There are many types of firefighters. Most research on firefighters' cancer risk has involved structural or municipal career firefighters. Wildland firefighters are specially trained firefighters tasked with controlling Wildfire. They frequently create fire lines, which are swathes of cut-down trees and dug-up grass placed in the path of the fire. This is designed to deprive the fire of fuel. Wildland firefighting is a physically demanding job with many acute hazards. Wildland firefighters may hike several miles while carrying heavy equipment during the wildfire season, which has increased in duration over time, especially in the western United States. Unlike structural firefighters, wildland firefighters typically do not wear Respirator, and may inhale Particulates and other compounds emitted by the wildfires. They also use Controlled burn to burn potential fire fuel under controlled conditions. To examine cancer risk for wildland firefighters, a risk assessment was conducted using an exposure-response relationship for risk of lung cancer mortality and measured particulate matter exposure from smoke at wildfires. This study concluded that wildland firefighters could have an increased risk of lung cancer mortality. The research on cancer for other subspecialty groups of firefighters is limited, but a recent study of fire instructors in Australia found an exposure-response relationship between training exposures and cancer incidence.
Due to the lack of central and comprehensive sources of data, research on cancer rates amongst firefighters has been challenging. On July 7, 2018, Congress passed the Firefighter Cancer Registry Act of 2018 requiring the Centers for Disease Control and Prevention to create the National Firefighter Registry designed to collect data on cancer rates among U.S. firefighters.
When not on the scene of an emergency, firefighters remain on call at , where they eat, sleep, and perform other duties during their shifts. Hence, sleep disruption is another occupational hazard that they may encounter at their job.
The time of exposure required to potentially cause damage depends on the level of sound exposed to. The most common causes of excessive sound exposure are sirens, transportation to and from fires, fire alarms, and work tools. Traveling in an emergency vehicle has shown to expose a person to between 103 and 114dBA of sound. According to OSHA, exposure at this level is acceptable for between 17 and 78 minutes and according to NIOSH is acceptable for between 35 seconds and 7.5 minutes over a 24-hour day before permanent hearing loss can occur. This time period considers that no other high level sound exposure occurs in that 24-hour time frame. Sirens often output about 120 dBA, which according to OSHA, 7.5 minutes of exposure is needed and according to NIOSH, 9 seconds of exposure is needed in a 24-hour time period before permanent hearing loss can occur. In addition to high sound levels, another risk factor for hearing disorders is the co-exposure to chemicals that are Ototoxicity.
The average day of work for a firefighter can often be under the sound exposure limit for both OSHA and NIOSH. While the average day of sound exposure as a firefighter is often under the limit, firefighters can be exposed to impulse noise, which has a very low acceptable time exposure before permanent hearing damage can occur due to the high intensity and short duration.
There are also high rates of hearing loss, often NIHL, in firefighters, which increases with age and number of years working as a firefighter. Hearing loss prevention programs have been implemented in multiple stations and have shown to help lower the rate of firefighters with NIHL. Other attempts have been made to lower sound exposures for firefighters, such as enclosing the cabs of the firetrucks to lower the siren exposure while driving. NFPA (National Fire Protection Association) is responsible for occupational health programs and standards in firefighters which discusses what hearing sensitivity is required to work as a firefighter, but also enforces baseline (initial) and annual hearing tests (based on OSHA hearing maintenance regulations). While NIHL can be a risk that occurs from working as a firefighter, NIHL can also be a safety concern for communicating while doing the job as communicating with coworkers and victims is essential for safety. Hearing protection devices have been used by firefighters in the United States. Earmuffs are the most commonly used hearing protection device (HPD) as they are the most easy to put on correctly in a quick manner. Multiple fire departments have used HPDs that have communication devices built in, allowing firefighters to speak with each other at safe, but audible sound levels, while lowering the hazardous sound levels around them.
Whether they are paid or not varies by country. In the United States and Germany, volunteer fire departments provide most of the cover in rural areas. In the United Kingdom and Ireland, by contrast, actual volunteers are rare. Instead, "retained firefighters" are paid for responding to incidents, along with a small salary for spending long periods of time on call. The combined fire services of the United Kingdom retain around 18,000 retained firefighters alongside their wholetime colleagues. In both the UK and Ireland retained firefighters make up the majority of active firefighting personnel. Their training, qualifications, and range of possible deployments, are all comparable to wholetime firefighters. Retained firefighters are required to live or work within a set radius of their assigned fire station - in the United Kingdom this is usually , and in Ireland .
Another point of variation is how the fire services are organized. Some countries like the Czech Republic, Israel and New Zealand have a single national fire service. Others like Australia, the United Kingdom and France organize fire services based on regions or sub-national states. In the United States, Austria, Germany and Canada, fire departments are run at a municipal level.
Singapore and many parts of Switzerland have fire service conscription. In Germany, conscription can also be used if a village does not have a functioning fire service. Other unusual arrangements are seen in Denmark, where most fire services are run by private companies, and in France, where two of the country's fire services (the Paris Fire Brigade and the Marseille Naval Fire Battalion) are part of the armed forces; similarly, the national fire service of Monaco is part of the Military of Monaco and maintains an armoury of sidearms for use by firefighters during civil defence operations.
Another way in which a firefighter's work varies around the world is the nature of firefighting equipment and tactics. For example, American fire departments make heavier use of aerial appliances, and are often split between engine and ladder companies. In Europe, where the size and usefulness of aerial appliances are often limited by narrow streets, they are only used for rescues, and firefighters can rotate between working on an engine and an aerial appliance.
A final point in variation is how involved firefighters are in emergency medical services.
A telecommunicator (often referred to as a 000 Operator in Australia) has a role different from but just as important as other emergency personnel. The telecommunicator must process calls from unknown and unseen individuals, usually calling under stressful conditions. He/she must be able to obtain complete, reliable information from the caller and prioritize requests for assistance. It is the dispatcher's responsibility to bring order to chaos.
While some fire departments are large enough to utilize their own telecommunication dispatcher, most rural and small areas rely on a central dispatcher to provide handling of fire, rescue, and police services.
Firefighters are trained to use communications equipment to receive alarms, give and receive commands, request assistance, and report on conditions. Since firefighters from different agencies routinely provide mutual aid to each other, and routinely operate at incidents where other emergency services are present, it is essential to have structures in place to establish a unified chain of command, and share information between agencies. The U.S. Federal Emergency Management Agency (FEMA) has established a National Incident Management System. One component of this system is the Incident Command System.
All radio communication in the United States is under authorization from the Federal Communications Commission (FCC); as such, fire departments that operate radio equipment must have radio licenses from the FCC.
Ten codes were popular in the early days of radio equipment because of poor transmission and reception. Advances in modern radio technology have reduced the need for ten-codes and many departments have converted to simple English (clear text).
The nomenclature of firefighting varies from country to country. The basic unit of firefighters is known as a "company" in many countries, including the United States, with its members typically working on the same engine. A "crew" or "platoon" is a subdivision of a company who work on the same shift. In British and Commonwealth fire services the firefighters of each station are more typically organised around a "watch" pattern, with several watches (usually four) working on a shift basis, as a separate "crew" for each engine or specialist appliance at that station.
The earliest American fire departments were volunteers, including the volunteer fire company in New Amsterdam, now known as New York.Essentials of Firefighting Fire companies were composed of citizens who volunteered their time to help protect the community. As time progressed and new towns were established throughout the region, there was a sharp increase in the number of volunteer departments.
In 1853, the first career fire department in the United States was established in Cincinnati, Ohio, followed four years later by St. Louis Fire Department. Large cities began establishing paid, full-time staff in order to try to facilitate greater call volume.
City fire departments draw their funding directly from city taxes and share the same budget as other public works like the police department and trash collection. The primary difference between municipality departments and city departments is the funding source. Municipal fire departments do not share their budget with any other service and are considered to be private entities within a jurisdiction. This means that they have their own taxes that feed into their budgeting needs. City fire departments report to the mayor, whereas municipal departments are accountable to elected board officials who help maintain and run the department along with the chief officer staff.
Firefighting around the world
Communication and command structure
Ranks
Firefighter equipment
History
Fundraisers
See also
Notes
External links
|
|