Finitism is a philosophy of mathematics that accepts the existence only of finite set mathematical objects. It is best understood in comparison to the mainstream philosophy of mathematics where infinite mathematical objects (e.g., ) are accepted as existing.
There were various positions taken by mathematicians. All agreed about finite mathematical objects such as natural numbers. However there were disagreements regarding infinite mathematical objects. One position was the intuitionistic mathematics that was advocated by L. E. J. Brouwer, which rejected the existence of infinite objects until they are constructed.
Another position was endorsed by David Hilbert: finite mathematical objects are concrete objects, infinite mathematical objects are ideal objects, and accepting ideal mathematical objects does not cause a problem regarding finite mathematical objects. More formally, Hilbert believed that it is possible to show that any theorem about finite mathematical objects that can be obtained using ideal infinite objects can be also obtained without them. Therefore allowing infinite mathematical objects would not cause a problem regarding finite objects. This led to Hilbert's program of proving both consistency and completeness of set theory using finitistic means as this would imply that adding ideal mathematical objects is conservative over the finitistic part. Hilbert's views are also associated with the formalist philosophy of mathematics. Hilbert's goal of proving the consistency and completeness of set theory or even arithmetic through finitistic means turned out to be an impossible task due to Kurt Gödel's incompleteness theorems. However, Harvey Friedman's grand conjecture would imply that most mathematical results are provable using finitistic means.
Hilbert did not give a rigorous explanation of what he considered finitistic and referred to as elementary. However, based on his work with Paul Bernays some experts such as have argued that primitive recursive arithmetic can be considered an upper bound on what Hilbert considered finitistic mathematics.
As a result of Gödel's theorems, as it became clear that there is no hope of proving both the consistency and completeness of mathematics, and with the development of seemingly consistent axiomatic set theories such as Zermelo–Fraenkel set theory, most modern mathematicians do not focus on this topic.
Reuben Goodstein was another proponent of finitism. Some of his work involved building up to analysis from finitist foundations.
Although he denied it, much of Ludwig Wittgenstein's writing on mathematics has a strong affinity with finitism.
If finitists are contrasted with transfinitists (proponents of e.g. Georg Cantor's hierarchy of infinities), then also Aristotle may be characterized as a finitist. Aristotle especially promoted the potential infinity as a middle option between strict finitism and actual infinity (the latter being an actualization of something never-ending in nature, in contrast with the Cantorist actual infinity consisting of the transfinite cardinal number and ordinal number numbers, which have nothing to do with the things in nature):
Towards the end of the 20th century John Penn Mayberry developed a system of finitary mathematics which he called "Euclidean Arithmetic". The most striking tenet of his system is a complete and rigorous rejection of the special foundational status normally accorded to iterative processes, including in particular the construction of the natural numbers by the iteration "+1". Consequently Mayberry is in sharp dissent from those who would seek to equate finitary mathematics with Peano arithmetic or any of its fragments such as primitive recursive arithmetic.
|
|