Ficus insipida is a common tropical tree in the Ficus of the family Moraceae growing in forest along rivers. It ranges from Mexico to northern South America.
In the 1960 Flora of Panama, Gordon P. DeWolf Jr. lumped the species F. adhatodifolia and F. crassiuscula as synonyms of F. insipida, but his taxonomic interpretation was not followed by subsequent authorities.
Ficus expert Cees Berg distinguished two allopatric or almost allopatric subspecies in 1984:
With about 750 species, Ficus (Moraceae) is one of the largest angiosperm genera. F. insipida is classified in subgenus Pharmacosycea, section Pharmacosycea, subsection Bergianae (for which it is the type species), along with F. adhatodifolia, Ficus carchiana, F. crassiuscula, F. gigantosyce, F. lapathifolia, Ficus mutisii, Ficus oapana ( spec. nov.? ined.), F. obtusiuscula, Ficus piresiana, Ficus rieberiana and Ficus yoponensis. Although recent work suggests that subgenus Pharmacosycea is polyphyletic, section Pharmacosycea appears to be monophyletic and is a sister group to the rest of the genus Ficus.
Mysteriously, genetic testing of a single individual of the three fig species Ficus maxima, Ficus tonduzii and F. yoponensis, each collected on Barro Colorado Island in Panama, found each species to be phylogenetically nestled within F. insipida. All four species occur together in a similar large range, but nonetheless, these species are quite easily differentiated morphologically. Strangely, in the case of the F. maxima and F. tonduzii specimens, these were nestled within a different haplotype, with an Amazonian distribution, as opposed to clustering within the haplotype found contemporaneously in Panama. An explanation for this is not readily apparent: the species may have recently evolved from F. insipida, although this would seem unlikely, or perhaps all three specimens just happened to be hybrids, another unlikely possibility.
Leaves vary shape from narrow to ellipse-shaped; they range from long and from wide.
In Mexico it has been recorded to occur in the states of Chihuahua, Durango, San Luis Potosí, Sinaloa, Sonora, Tamaulipas and Zacatecas in the north, southwards to Campeche, Chiapas, Colima, Guerrero, Hidalgo, Jalisco, México, Michoacán de Ocampo, Morelos, Nayarit, Oaxaca, Puebla, Querétaro, Tabasco and Veracruz de Ignacio de la Llave. In both Costa Rica and Nicaragua it is found in lowlands along both the Atlantic and Pacific coasts, as well as in the central valleys.
In Bolivia it has been recorded in the northern and eastern departments of Beni, Cochabamba, La Paz, Pando and Santa Cruz: most of the country except the Andes in the southwest. In Ecuador it is known from the provinces of Esmeraldas, Imbabura, Manabí, Morona-Santiago, Napo, Pastaza, Sucumbíos and Zamora-Chinchipe. In Colombia the species has been recorded in the departments of Amazonas, Antioquia, Bolívar, Boyacá, Caquetá, Casanare, Cauca, Chocó, Cundinamarca, La Guajira, Guaviare, Huila, Magdalena, Meta, Nariño, Norte de Santander, Putumayo, Risaralda, Santander, Tolima and Valle.
The distribution in Brazil includes, besides Amapá and Pará mentioned above, the states of Acre, Amazonas and Rondônia. In the state of Pará both subspecies appear to occur, although this is unclear.
The scabra subspecies appears to have a slightly different habitat preference, being typically found on slopes in either rainforest or mountain savannas in the Guianas.
It is a monoecious species, the figs, actually a specialised inflorescence called a synconium, are densely coated in minute flowers ('') on the inside, both functionally male and female. The female flowers mature first; they are found in two different versions, with a short or long style. The stigmas of the female flowers are thickly intertwined and coherent to each other at the same height (short-styled florets are simply positioned somewhat higher using pedicels and somewhat longer ovaries to maintain the stigma surface), and form a surface layer a certain distance from the inner wall of the fig, called the synstigma - this synstigma essentially functions as a platform on which the Pollination wasps must walk and from where they must oviposit their eggs. The synstigma is so coherent, may grow from one stigma into the ovule of another neighbouring floret. The length specified by the distance between the synstigma and the ovules helps determine which wasp species may live in a particular fig species, and also cause the females to mostly lay their eggs in the short-styled florets (although in F. insipida this is not so strict, and both types of florets are fertile and both can host a wasp larva).
The flowers found within the figs of F. insipida are pollinated by the females of tiny wasps belonging to the genus Tetrapus, which complete much of their lifecycle within the developing figs. The female wasps are weak-jawed, and rely on the males to free them from their figs and individual fruit in which they develop and pupate, but only the females are winged, and can thus fly to the next fig to lay their eggs. The males develop first, they are wingless but have stronger jaws, which they use to chew their way to freedom from their host ovule. Once free, they chew free the females, copulating with them while the females are still largely trapped in their ovules -this ensures each female has sex, females which do not copulate will Haplodiploidy as offspring. The males also chew holes through the walls of the fig and open up the ostiole (a small opening at the apex of the fig), allowing the females to escape. Meanwhile, the male flowers within the fig finally shed their pollen, which adhere to the females in specialised pockets or simply onto their body surface. The females search for a new fig in which to lay their eggs, and upon arriving upon one must embark upon their greatest challenge: forcing their way within through the ostiole. Although the wasps are quite minuscule, they nonetheless regularly undertake reasonable journeys, as can be seen in the genetic structure of the fig tree populations: there is clear evidence of abundant outcrossing in the nuclear DNA (which is transported in the pollen dusted on the females, as opposed to mitochondrial DNA). The ostiole is barred by a series of , but unlike in many other Ficus species, only the uppermost ostiolar bracts are interlocking and patent, with the inner bracts positioned inward and relatively open, thus forming a long slit-like tunnel allowing access to the central cavity. Nevertheless, entering the cavity is a strenuous task, and the females are often die in the tunnel, or are damaged by the ordeal, with their wings invariably torn off from forcing their way through the bracts. Once inside, the females inject their eggs with their ovipositor, through the styles of the correct length, into the ovules: one egg an ovule. While doing so, the females pollinate the other flowers when walking around on the synstigmatic surface. The seeds and the larvae mature in a few weeks, at approximately the same rate.
It uses zoochory to disperse its seeds. The figs are eaten by bats, howler monkey, spider monkey and in the Guianas. An especially important species to aid in dispersal via endozoochory in Costa Rica is possibly the large and common trout-like fish Brycon guatemalensis, of which the adults primarily feed upon the fallen leaves and figs of F. insipida. The seeds can survive the passage through the gut of the fish, although their viability is significantly diminished. Nonetheless, the fish may have a specific value for the fig as a dispersal agent: this fig species primarily and typically is found along rivers, and fish have the advantage of generally dispersing the seeds along rivers. Furthermore, fish are able to disperse upriver, and thus maintain upriver populations, whereas dispersal by floating the figs in water (hydrochory) alone is generally in a downriver direction (in most habitats). The leaves and especially the fruit of F. insipida and F. yoponensis are a preferred food of howler monkeys in Panama ( Alouatta palliata), with one troop on Barro Colorado Island spending one quarter of its time feeding on these two types of trees. The asynchronous plant characteristics, and the food preference of the monkeys, results in the monkeys adopting specific foraging routes in order to check up on the status of as much of the potential trees as can be done efficiently.
The latex can be purified, leaving a complex of enzymes known as ficin, a white powder that was first produced in 1930. This product is likely safe. It was initially observed that intestinal nematodes dissolved in a ficin solution, which increased interest in the product at the time as an anthelmintic, although it was not widely adopted.
Ficin is a mix of different enzymes and can be produced from many different species of Ficus. The main proteolytic enzyme found in ficin produced from F. insipida has officially been named ficain.Perelló, Mario; Arribére, María Cecilia; Caffini, Néstor; Priolo, Nora (2000): Proteolytic Enzymes from the Latex of Ficus pumila L. (Moraceae). Acta Farm Bonaerense 19(4): 257–262. Purified ficin has numerous medical and industrial uses. It is used for cleaning in the production of stitching material for Surgical suture, to prepare animal arteries before transplantation into humans, and for unmasking in serology. It is similarly used for cleaning the animal intestines used as sausage or cheese-casings. It is used as an additive to make freeze-resistant beer, and has been added to certain formulations of along with related protease-type enzymes.
According to Schultes and Raffauf in their 1990 book The Healing Forest, the fruit of Ficus anthelmintica (an antiquated synonym of F. insipida) has been used by an unknown people somewhere in the northern Amazon of Brazil as an aphrodisiac and for what they categorise as a 'memory enhancer'.
Similar species
Distribution
Prehistoric distribution
Spatial distribution
Ecology
Habitat
Lifecycle and community ecology
Uses
Conservation
|
|